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ABSTRACT

In this study various through and part-through crack problems in
plates and shells are considered. The line-spring model of Rice and
Levy is generalized to the skew-symmetric case to solve surface crack
problems involving mixed-mode, coplanar crack growth. New compliance
functions are introduced which are valid for crack depth to thickness
ratios at least up to .95. This includes expressions for tension and
bending originally used by the model for symmetric loading as well as
new expressions for in-plane shear, out-of-plane shear, and twisting
for the skew-symmetric case. Transverse shear deformation is taken
into account in the plate and shell theories and this effect is shown
to be important in comparing stress intensity factors obtained from
the plate theory with three-dimensional surface crack solutions.
Stress intensity factor results for cylinders obtained by the line-
spring model also compare well with the three-dimensional solutions.

By wusing the line-spring approach, for a given crack length to
thickness ratio, stress intensity factors can be obtained for the
through crack and for part-through cracks of any crack front shape,
without need for recalculating integrals that take up the bulk of the
computer time. Therefore, parameter studies involving crack length,
crack depth, shell type, and shell curvature are made in some detail.
The results presented are believed to be useful in brittle fracture,
and more importantly, in fatigue crack propagation studies.

The line-spring model is also used to solve the contact problem
in plate bending. Investigations into stress intensity factors for

1



crack growth in the length direction (as opposed to growth in the
thickness direction), are also made by using the model. The endpoint
behavior of the results given by the line-spring model is considered
in detail.

In addition to part-through crack problems, some results for
single and double through cracks are presented. The thin plate
bending limit of Reissner’s theory and its relationship to the
classical theory are reconsidered.

All problems considered in this study are of the mixed boundary
value type and are reduced to strongly singular integral equations
which make use of the finite-part integrals of Hadamard. These
equations are obtained by using displacement quantities as the
unknowns, rather than the more commonly used displacement derivatives
which lead to 1integral equations with Cauchy singularities. The
equations are solved numerically in a manner that is believed to be

very efficient.




CHAPTER 1

Introduction, Literature Survey and Overview

1.1 Introduction

Pressure vessels, pipelines, containers, ship hulls, etc. are all
shell-like structures which can fail by fracture. The designers of
these components must take this into account as such failures are
often catastrophic, endangering lives and the environment. The
fracture process typically starts with a small material defect or weld
imperfection that grows in fatigue which is driven by mechanical or
environmental conditions. Eventually the flaw may be characterized as
a macroscopic surface crack. This surface or part-through crack then
continues its growth through the thickness, leading to failure by
leaking or to unstable fracture.

In the discipline of fracture mechanics one usually assumes an
initial flaw configuration, and then seeks to obtain certain fracture
parameters that are believed to govern the tendency of the crack to
grow. In the case of brittle fractures and more importantly,
fractures by fatigue, the stress intensity factor (SIF) is the most
commonly used parameter.

The analysis of through cracks in thin structures was first
performed within the theory of plates and shells, which allows for a
straightforward analytical solution for practical geometries such as
cylinders, spheres, and pipe elbows. The problem is of the mixed
boundary value type and is reduced to a system of dual integral
equations or a system of singular integral equations (SIE), most often
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the latter. It is usually assumed that the curvatures are constant
and the shell has constant thickness, the material is homogeneous,
isotropic, or perhaps specially orthotropic, and behaves in a linear
elastic manner. Three-dimensional effects due to the interaction
between the free surface and the crack plane are neglected. Benthem
[1] has investigated these effects for a crack in a half space. To
date no research has included this surface layer behavior in a problem
with a practical geometry.

The surface crack has a three-dimensional geometry which seems
accessible only to either analytical or numerical techniques from the
theory of elasticity. Rice 1in 1972 [2,3] introduced the so-called
line-spring model (LSM) which transformed the part-through crack into
a through crack problem by making use of the edge-cracked strip plane
strain solution. This model has been shown to give very good results
in spite of its simplicity. Therefore, within the limitations of this
model, both through and part-through crack problems can be solved with
the same plate or shell theory formulation.

It is important to point out that for a through crack the primary
interest 1is in the behavior of the stress state at and near the crack
tip. Whereas, for surface cracks the most important point is the
deepest penetration point of the crack front. The model in its
original form is limited to symmetric (mode 1) fracture, and cannot
predict behavior at the endpoint where the crack front meets the free

surface (again neglecting the free surface effect).




1.2 Literature Survey

The problem of determining the singular stress field in an
infinitely large plate of thickness h, containing a finite crack of
half-length a, subjected to tension was studied by Williams [4] in
1957. In a 1960 paper [5] Williams also investigated the problem of
plate bending by using the classical plate theory. Although in the
bending problem the stress singularity was observed to be the same as
in the plane elasticity case, (namely r_l/z), the angular variation of
the stresses around the crack tip was found to be different. Shortly
after this paper was published, Knowles and Wang [6] showed that this
discrepancy could be removed if the 6th order Reissner plate theory
[7,8], which includes transverse shear deformation, was used. This
theory allows for the satisfaction of all three crack surface boundary
conditions (lxy:O, Vx=0, ny=0), instead of combining these three
conditions into two as did the previous theory by use of the Kirchhoff

oM
condition, (nyzo, Vx+ .3 4 =0). The work of Knowles and Wang was

By
later made more complete by Hartranft and Sih [9] and by Wang [10].
In these papers the SIF solution is given for various crack length to
plate thickness ratios, i.e. (a/h).

In the paper by Knowles and Wang it was observed that Reissner’s
theory approaches classical theory in the limit as h/a+*0, or as the
plate gets thin. This limit is well behaved except at the crack tip
where boundary layer behavior in the SIF is indicated by graphical
solutions [9,10]. This "discontinuous" behavior was discussed by
Civelek and Erdogan [11] with the aid of more complete and more

precise numerical results, but not proven. Also it was pointed out by
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Hartranft [12] that this 1limit should not be used. For more
discussion of this problem see Sih [13].

In all of the preceeding papers the solution was limited to
symmetric (mode 1) loading, which includes tension and bending. Wang
in 1970 [14] was the first to consider twisting, again with Reissner’s
plate theory. The asymptotic stress field was shown to be compatible
with 2-D elasticity, therefore mode 2 and 3 SIFs had the same
elasticity definition. This problem is not approachable by the
classical theory for the same reasons that apply to plate bending.
The results of Wang [14] were extended by Delale and Erdogan [15] to
include specially orthotropic materials.

The first analysis of cracks in shells was presented by Folias in
1965 for a cracked sphere [16,17] and for an axially cracked cylinder
[18]. The circumferentially cracked cylinder was investigated in 1967
[19]. The results in these papers are asymptotic in nature for short
cracks. A shallow shell theory was also used which linearizes the
governing equations. The full curvature problem is non-linear and has
not yet been solved by analytical techniques although Sanders [20,21]
has used a thin shell theory which is linear yet valid for a complete
cylinder to obtain energy release rates (not SIFs) for long cracks.
The validity of shallow shell analysis can be summarized as follows:
for a given shell radius, the smaller the thickness h, the more
appropriate the shell assumption; the shorter the crack length 2a, the
more appropriate the shallow shell assumption.

In the late 1960’s Erdogan and Kibler [22] and Copley and Sanders
[23] provided a more complete solution to the problems studied by
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Folias. Although the same approximate, shallow shell equations are
employed, the numerical techniques for the solution of the singular
integral equations are exact (to any reasonable specified degree of
accuracy) .

The major shortcoming of these early shell solutions, including
the work of Sanders [20-21], was the neglect of transverse shear
deformation as in the early plate bending problem. In shells, since
extension and bending are coupled, the elasticity concept of the SIF
cannot be used with these 8th order theories without redefinition. As
bending becomes more of a factor in the geometry and loading
considered, the results become less accurate. Also the contribution
from extension is affected. It was Sih and Hagendorf [24] in 1974 who
first solved cracked shell problems with transverse shear accounted
for; see also a second paper by Sih [25]. Later papers, which used
the shallow shell governing equations due to Naghdi [26], provided
more exact and extensive results for the axially cracked cylinder, see
Krenk [27], and for the circumferentially cracked cylinder, see Delale
and Erdogan [28]. It was shown in these papers that the asymptotic
stress field obtained is compatible with the solution from the theory
of elastic fracture mechanics; therefore standard fracture parameters
such as the SIF could be used. The skew-symmetric shell problem was
studied by Delale [29] and it was shown that the mode 2 and 3 stress
intensity factors also have the same elasticity definition. Therefore
it appears that the simplest shell theory that may be used to study
cracks in plates and shells to obtain SIFs is one that includes
transverse shear deformation, ([7,8,26]. 1In 1983 Yashi and Erdogan
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[30] solved the shallow shell problem for a crack arbitrarily oriented
with respect to a principal line of curvature. They used the same
fornulation as was used by Delale and Erdogan [28], but the analysis
involved ten unknowns instead of two [28] or three [29] because of the
loss of symmetry.

In all the previous shell solutions which included transverse
shear deformation, the assumption of shallowness has been applied.
Barsoum, Loomis, and Stewart [31] were the first to publish results to
the complete through crack problem in a cylinder by using finite
elements which took into account transverse shear deformation. There
is good agreement between these results and the results from the
shallow shell theories [22,27], even for relatively long cracks. More
recent finite element calculations by Ehlers [32] disagree with the
work of Barsoum, et. al. However these calculations are limited to
a/R>.5, which for a "shallow shell", is a very long crack. More work
must be done to determine the error due to the shallow shell
assumption for increasing a/R. This theory may be regarded as an
asymptotic solution for small a/R.

The study of surface cracks in plates and shells has a more
detailed history involving three-dimensional numerical techniques
because it is both more important and more difficult. In addition to
the finite element method [33,34], there is the alternating method
[35,36], the boundary integral equation method ([37]), the finite
element alternating method [38-40], the method of weight functions
[41,42], and the body force method [43]. The standard solution for
plates is that of Newman and Raju [33]. The more recent work of
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Isida, Noyuchi, and Yoshida [43] have verified these results and
perhaps slightly improved upon them. For reviews of the various
solutions and methods see [44-46].

The previous studies for surface cracks deal only with mode 1
loading, which is the most important mode for crack extension.
However there are situations that involve twisting and shearing that
cannot be neglected. For instance, depending on the geometry, when
these loadings are primary, a secondary mode 1 contribution can
result. The body force method [47] has recently been applied to an
inclined surface crack in a half space which involved all modes of
fracture. This problem has not received much attention in the
literature, because it is less important than mode 1, and also more
expensive to solve.

As mentioned previously the line-spring model allows for the
solution of the 3-D surface crack problem within the 2-D theory of
plates and shells. This reduces the computational effort
considerably. Therefore more extensive parameter studies can be made
once the model has been verified by the more accurate three-
dimensional methods.

Since the introduction of the model in 1972 [2], there have been
numerous papers suggesting improvements and modifications. As with
the through crack problem the use of a Reissner plate theory has
improved the results [48,49], especially for realistic crack lengths
on the order of a/h=1. The classical theory gives good results for
a/h22, and in the limit as a/h+» the two theories are the same (for
the LSM). The initial suggestions of Rice [3] concerning the use of

9



the model to study plasticity effects have been advanced by Parks [50]
and more recently by Miyoshi, Shiratori, and Yoshida [51] who used the
model with thick shell finite elements to predict crack growth. Other
researchers [49,52] have devised techniques that implement a numerical
plate or shell solution instead of the original singular integral
equation procedure. This is an advantage in shell analysis, because
to date, the analytical techniques are limited to the shallow shell
theory which is not valid for long cracks. However the long surface
crack is not a practical geometry, and if needed, can usually be
approximated by a plane strain solution.

Yang in a recent paper [53] has considered crack surface loading
in the form of a polynomial to solve problems of residual or thermal
stress. The original LSM used only the constant and linear terms
associated with tension and bending plate variables respectively.
Theocaris and Wu [54,55] have suggested a way to determine the SIF at
the corner of a surface crack. This method seems inappropriate since
they have used the classical theory of plate bending which is unable
to predict this value for the much simpler through crack case. The
finite width plate has been solved by Boduroglu and Erdogan [56,57].
All previous LSM solutions were for an "infinitely large" plate.
Erdogan and Aksel have considered the cavity in a plate [58] and Wu
and Erdogan have extended the LSM to an orthotropic plate [59].
Delale and Erdogan [60] have used the model with a shallow shell
formulation to predict SIFs for surface cracks in cylinders for axial,

circumferential, inner and outer cracks.
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1.3 Overview

The primary interests in this study are to extend the LSM to the
mixed-mode case and to use the model to approximate crack growth
tendencies in the length direction as opposed to the depth direction
for which it already applies. In Chapter 2 the line-spring model for
mixed-mode loading conditions is derived. Furthermore, the mode 1
compliance relations [61-63,48] are improved by using the recent edge-
cracked strip solution of Kaya [64]. The curves are fit to data for
OS(LO/h)S.QS and may be used for the entire range of values as the
curves have the proper asymptotic behavior for (Lo/h)*l [65]. Also
the necessary solutions for modes 2 and 3 are obtained.

In Chapter 3 some unsolved through crack problems in plates are
considered and the thin plate limit for Reissner’s theory is
investigated to better understand the validity of the classical plate
theory when applied to the LSM. 'In Chapter 4 the LSM, with and
without including the transverse shear deformation, is compared to
finite element surface crack solutions. SIF comparisons are also made
for the corner of a semi-elliptical surface crack. The contact
bending or crack closure problem, a difficult unsolved 3-D problem, is
solved in a straightforward manner. Also extensive SIF results are
given for both rectangular and semi-elliptical crack shapes under all
five 1loading conditions, 1i.e. tension, bending, out-of-plane shear,
in-plane shear, and twisting.

Crack problems in shells are considered in Chapters 5 and 6.
Comparisons of surface crack solutions obtained with the model are
made with 3-D solutions from the literature [34,40]. Various unsolved
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through and part-through problems are considered and the effect of
curvature is studied for both the symmetric and the skew-symmetric
cases.

All integral equations are derived with displacement quantities
as unknowns. The resulting equations are, therefore, strongly
singular and make use of the finite-part integrals of Hadamard [66],
see also Kaya [67]. Finite-part integrals as used in this study are
defined in Appendix B. The numerical techniques used to solve these
equations are presented in Appendix E.

The definition of stress intensity factors (SIFs) that are

referred to throughout this dissertation is given in Appendix G.
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CHAPTER 2

The Line-Spring Model

2.1 Introduction.

A surface or part-through crack in a pipe, pressure vessel, or
any other shell-like structure is a common and important flaw geometry
to analyze, see Fig. 2.1. Because the elasticity problem is three-
dimensional, many solutions involve expensive numerical techniques
such as the Finite Element Method [33,34], the Alternating Method
[35,36], the Boundary Integral Method [37], the {finite element
alternating method [38-40], the method of weight functions [41,42],
and the body force method [43]. This problem has also been formulated
analytically for a {lat plate or strip in terms of two-dimensional
integral equations, but has not been solved [67].

The line-spring model, proposed by Rice and Levy [2], and
incorporated in a plate or shell theory that allows for transverse
shear deformation [7,8,26], competes with these methods because of its
simplicity and surprising accuracy. See Figs. 4.1-4, 6.1,2, for
comparisons with the Finite Element Method and for the effect of
transverse shear for various geometries in mode 1 loading.

Briefly, the model allows one to use a plate or shell theory to
formulate the problem by removing the "net ligament", and replacing it
by unknown, thickness averaged stress resultants which are treated as
crack surface loads in a through crack problem. See Fig. 2.2 for a
mode 1 illustration of this process. This reduces by one dimension
the complexity of the analysis. The force resultant and displacement
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variables used in both plates and shells are given below and are
defined in Figs. 2.3a-c. Also the corresponding fracture modes are

included in the figures.

)= { PRy R F T ) (2.1)
(gt ) =
nay, Vo By, Bo ) (2.3)

@' = {upugugiugug )= (oo g, ) (2.4)

b= ul-u il,...5. (2.5)

The two dimensional formulation of through and part-through crack
problems in plates and shells as a mixed boundary value problem makes
use of the superposition illustrated in Fig. 2.4. With regard to
these figures, fi are the constant applied loads at "infinity" or away
from the crack region and N and M are unknown stress resultants which
are due to the net ligament of the part-through crack. In the case of
a through crack, the crack surfaces are stress-free so N=M=0. For the
solution of the mode 1 perturbation problem in a plate shown in Fig.

2.4, the following singular integral equations must be solved:

21 § 91‘12 dt = —(ﬁxxﬁNxx) ! (2.6)
(t-y)
2, b b
1 2 [ pop) a =By 20

For the derivation of Eqns. 2.6,7 and for the expression for K22(y,t),
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7, and v see Chapter 3. Also see Appendix B for the interpretation of
the strongly singular integrals appearing in these equations. The
unknowns in the equations are N, M, u, and f. Since there are four
unknowns and only two equations more information is needed. In the
derivation that follows N and M are linearly related to u and f in the
manner of a spring. After substitution of these relationships into
Egns. 2.6,7, u and f can be numerically determined from which all

quantities of interest can be calculated.

2.2 Derivation of the Compliance Relationships.

The line-spring model is based on two assumptions. The first,
previously stated, and illustrated in Fig. 2.2, involves replacing the
net ligament (in which the state of stress is two-dimensional), by
resultant forces which are functions of y only. The second assumption
is that the stress intensity factors along the crack front may be
obtained from these resultant forces as though the stress state were
one of plane strain. The restriction at the ends of the crack and the
crack front curvature, both act against this assumption. Therefore
the model is most accurate in the center of the crack and improves s
the crack gets longer for a given «.ack depth, i.e. as plane strain
conditions are approached.

In order to make use of this analogy, the plane strain stress
intensity factor solution for an edge-cracked strip must be available
for the five possible loading conditions in a shell on a given
surface, see Eqns. 2.2,3 and Fig. 2.3a-c. These solutions are

presented in Appendix C along with a curve fit in the form,
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k. K. i
(f) = —h = i o1 c. ¢k 2.8

where L 1is the crack depth, and the variable §¢ is the ratio of the
depth L to the strip thickness h, i.e. §=L/h. From Fig. 2.3a-c, when
i=1 or 2, j=1, when i=3, j=2 and when i=4 or 5, j=3. The exponent X
is 3/2 when i=1,2 (mode 1), and 1/2 when i=3,4,5 (modes 2,3). The

constants n; and Cik are given in Appendix C. From this follows

K1 = {x¢h [ 0181 * 0989 ], (2.9)
K2 = {7éh 0383 > (2.10)
K3 = {xéh [ 0484 *+ OsBg ] . (2.11)

In these expressions oizoi(y) represents the net ligament stresses
according to the relations given in Fig. 2.3. Note that £={(y).

The derivation is based on expressing the energy available for
fracture along the crack front in two different ways. First we
generalize Irwin’§ relation [68,69] for the potential energy release

rate,

1—u2 { K2 2

.d P __1_2}
dL(U—V) =G = B 1 K2 * 1 K3 , (2.12)

where U is the work done by external loads and V is the strain energy.

The use of the relation,

) (1—u2)K§

Gy = —f — (2.13)

involves the assumption that the crack will grow in its own plane.

This would apply to structures that are made of composite materials
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that may have a weak cleavage plane [70]. If the crack deviates from
a straight path, G2 in Eqn. 2.13 is not the energy dissipated by
incremental crack growth, and therefore Eqn. 2.12 would not be valid.

With the assumption of coplanar crack growth, Eqns. 2.9-11 are
substituted into Eqn. 2.12 to obtain,

2
d 1-v 2 2 2 2 2 2
a(U-Y) = b7g— | 078] + 20,008,85 + 0985 + 0383 +
1 [ 22 22 ]}
1 | 9484 * 20405g4g5 + 0cgp . (2.14)
Next consider the crack to extend from L to L+AL under "fixed
load™ conditions. The changes in U and V are as follows (refer to

Fig. 2.5 for the notation used),

AU

1]

F.8, , | (2.15)

AV F.6. =+ F.5. , (2.16)

i

1
2 Fi(61+A51) -

N
o
-
DO f—
-
[

where Fi and 6i are defined in Eqns. 2.1-5.

After writing

14

26.= 5t AL, (2.17)

due to the force Fi’

d (U-V) = 1 F ?Ei (2.18)
dL S 27i09L - )

The sum of all five loadings is,

d 12 %
EE(U_V) =3 Eé;Fi 3L (2.19)

Define the following matrices,

o ]|=0

63" = {6;,65.65,65,60)={6,.26,25,6,06. ), (220
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2

g1 glgz 0 0 0
g8, & 0 0 0

@ =|0"% 0 g ,0, 0O
0 0 0" — ¢ — g,

1.0 &4 1;v 54°5
0 o o -1 1 g
| 1-v 8485 1-v 85

(2.21)

Now equate Eqn. 2.14 to 2.19 using Eqns. 2.3,20,21 for substitution to

obtain,

2
b 20T (610} = 5 b {0)T50 (67
or

2
0 ) 2(1-
2 (50) = 205 (a1(0} .

Integrate and observe that o # o(L),
2 L 0
) 2(1-
(o'y = 20 { Jo[c] dl ) {0} + {6}y, -
Next define

L ¢
B = logy) = ] @@ =] @, e=1m,

ij 0
where
If ; .
LI Ogigj £, 1,j°1,2,3
and
1 JE .
al] - 1 v Ogng d€ ) 1;3'4)5 .

Because of the form chosen for the functions g; (see Eqn. 2.8), a

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

1]

are determined numerically. When the matrix [B] is substituted into

Eqn. 2.24 and the equation is solved for the stresses, the result is
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oy = —E— ey, (2.28)

2h(1-1%)
where
a22/A1 —alz/A1 0 0 0
—al2/A1 all/Al 0] 0 0
[B]_l: 8 8 16033 a ?A -a 7A ’ (2.29)
55/ 72 45' "2
0 0 0 —a45/A2 a44/A2
and
A, = a. .a,,- a2 A, =a, a0 - a2 (2.30)
1 11722 712 2 44755 745 - ’

Eqn. 2.28 has the information that is needed for substitution

into integral equations of the form of Eqns. 2.6,7. First it must be

non-dimensionalized. This is done according to the definitions in
Appendix A. Since all problems in this dissertation are either
symmetric or skew-symmetric we have 61 = 2ui, ice. lu'l= Iul= u, .

The final non-dimensional result is:
91 = T * TioY2 o

g = 6[T1u; + T9qusl »

_ 5
%3 = 8(1+v) T33"3 °

Q
]

4~ T44%4 * Ty5Y -

= 6[754u4 + 755u5] , (2.31)

=
1l

2
1 (1-v7) [ @,,0, + 8300, ],

2
= 6(1-v7) [ 2,501 + 05500 ],

=]
V]
I
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_3 2
ug =5 (1-v%) 03303

2
g = ) lay0, v au505 ],

=
1}

2
ug = 6(1-v7) [ @0, + Qpc0p ], (2.32)
where
. 1 2o - -1 212
2 12 605 A,
1 @
To1 = 7 ’ = —
21 = T2 22~ 360143 b ‘
16 1
133 = 15(1-v) agy
ot g o a5
44 2 ’ 45 ~ 2
1-v A2 6(1-v7) A2
1 a
44
7 =1 ’ 9 = - (233)
54 = Tas 55 " 360109 b,

If these equations are now substituted into Eqns. 2.6,7, the

result is,

b "
5 } "Riglz R R P A WE (2.34)
a (t-y)
2, (b b
L } L a0+ 57 J Kyg (v, £)A(2) dt
a (t-y) a

" Ygqu T Mgof = _ﬁxx - “32/6 : (2.35)

The compliance coefficients 7ij are indirectly functions of y
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through the variable § which is the non-dimensional crack depth. Note
that for a through crack the 7ij are zero. In this case the equations
uncouple and respectively correspond to tension and bending loadings.
Since the model is most accurate in the central portion of the
crack, it 1is best applied to problems where failure occurs when the
surface crack grows through the thickness leading either to leaking or
to the development of a through crack which then grows in length to
critical size. Because of the plane strain assumption, the model
becomes less applicable near the ends of the crack. Although the
model unexpectedly gives reasonable results here (see Figs. 4.1-4 and
6.1,2 where curves are drawn up to y/a = .98), the use of the solution
in this region for anything other than general trends is not
justified. Even though the solution at the ends is not used, the
behavior of the solution here plays a role in the convergence of the

method over the entire range, and therefore should be examined.

2.3 Endpoint behavior.

In the case of the through crack it is known that the behavior of
the displacement quantities are of the form (see Appendix D),

u (v) = £ (1) 1-tHY2 (2.36)

where the square root is referred to as the weight function (of the
integral equation) and fi(t) is a simple function which can be
represented by a polynomial that is easily obtained numerically. Note
that the crack domain has been normalized to (-1,1). If ui(t) were

determined without extracting the endpoint behavior given by the
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weight function, convergence of ui(t) towards the ends (i.e. -1,1)
would be wunacceptably slow. Also in the through crack problem the
stress intensity factors are proportional to f(-1) and f(+1), and
therefore can only be found if the weight is extracted. The addition
of the line-spring terms into the integral equation has an effect on
this asymptotic analysis only if the net ligament stresses are
unbounded, which is unreasonable. If these stresses are assumed to be

finite at the ends, Eqns. 2.32 and 2.36 show that,

u = A0 [ a0, + a0, ] = £ (8) 1sH1/2
Ug = 6(1-/°) [ @901 * Ugoly ] = f2(t)(1-t2 /2
ug = 3 (17 0y, = 1,0 14D 2

Y4 T A1 4404 * Oys05 ] = f4(t)(1—t2 172

u 2)1/2

¢ = 61D ay0, + a0 ] = £,(6) (1t (2.37)

For finite, non-zero net ligament stresses, aij in Egns. 2.32 must
carry the square root behavior as t approaches -1 and 1. Recall that
aij are functions of t through the crack shape variable {. If the
crack depth of the surface crack is non-zero at the ends as in the
case of a rectangular crack, a.1j will be constant at the endpoints.
The solution will then require o, to be zero at the endpoints, a
condition that does not seem reasonable. If the crack depth, { is

zero at the ends, the behavior of aij will depend on how § goes to

zero. For small { we may write
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N .
g * Zci.gJ , (2.38)
j=0 ™

from which we obtain from Eqns. 2.26,27,

r 2 .2 27 3 4
a1 =3 €10 * 73 ¢0c11§ * UE)

- _1 2.1 3 4
@19 = 891 =5 S99 * 3 [ Cp0c11 * C1pSg1 1€ + 0(E)

r 2.2 21 3 4
g9 = g Coof" *+ T3 Cooter€ + 0(ET)

T 2 4 5
233 = ¢ z1é * 0&D)

r 2 .2 PLs

3 4
2 S408 * T3 401§ * 0

(l—u)a44

x 2 1 3 4
(1-V)a,g = (1-v)agy = 5 c45c508" + 3 [ C40Cs1 * C50Cg11¢+ 0(€7),

T 2,2 2r 3 4
(l—V)a55 2 c50§ + 53 c50c51§ + 0(€7) , (2.39)
where from Eqn 2.8 the cij in terms of the Cij are,

0 = %0

cip = Cip + MGy - (2.40)

More terms in this series are given in Appendix F.

In order for Eqn. 2.37 to be true for bounded, non-zero stresses,

Eqn. 2.39 (except for 033) suggest that:

(2.41)

’

. 2.1/2
aij (1-t%)

¢ ~ (l-tz)l/2 . (2.42)

Therefore if the crack shape is chosen in the form
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§ = 60(1-t2 1/4 ) (2.43)

convergence will be good for Itl < 1. Rice [2] made this point. Any
other crack shape will impose either unbounded or zero endpoint
behavior on the net ligament stresses and the solution will not
converge at the endpoints in a satisfactory manner. If one considers
the semi-ellipse for example, o, will be of the order (l—tz)—l/2 as
It] approaches 1.

There is one exception. In the case of @zq in Egn. 2.37 the
stress 0, will be zero. This should be expected because the assumed
form of the out-of-plane shear stress is parabolic, i.e. zero at the
surface of the shell. Therefore as the crack depth goes to zero so
does Og-

It should be pointed out that regardless of what form of the
crack is chosen, satisfactory convergence can be obtained in the
central portion where the line-spring model is most applicable. The
results in this dissertation were thus obtained for the semi-ellipse.
But if a solution is desired for (-1,1), it is necessary to have the
crack shape at the ends asymptotically behave like Eqn. 2.43. A

procedure to get this function utilizes a simple expansion about zero

and for some typical shapes is as follows. Let
2\n
€ = & (1-t°) (2.44)

be the desired shape. Note that a rectangle is given by n=0, and a

semi-ellipse results from n=1/2. Next we write

€ =6, 1t = ¢y 1-tH (1) (2.45)
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where
2.n-1/4 ., S 95
g(t) » (1-t%) ¥ 2 a . (2.46)
i=0

M is chosen so that an adequate representation of the crack front is

given over most of the domain, and the coefficients a;, are given as

follows,
ag = 1
a; = -(n-1/4)
o, = {n-1/4)[(n-1/4)-1]
2 2!
NN CSVZ S VOB CS IS R, .

The convergence of Eqn. 2.46 is demonstrated for n=0 and n=1/2 in
tables 2.1,2, respectively. Stress intensity factor results of Egns.
2.6,7 for the crack shapes in these tables are given in tables 2.3-6.
The stress intensity factors in Eqns. 2.9-11 are normalized with
respect to the value of K from Eqn. 2.8 for £ in the center of the
qrack and for the corresponding loading, see section C.4 of Appendix
C. This technique however, is of limited use.

Semi-elliptic crack shapes are chosen for most mode 1 analysis
because of their general resemblance to surface cracks. Most
experiments however show that cracks grown by fatigue tend to have a
blunter shape at the ends, see for example [55,71]. Note that the 1/4

power represents this better than 1/2.
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One further point to make before concluding this chapter is that
for small § the inverse of the B matrix (Eqn. 2.29) is singular and

the asymptotic behavior of relations 2.32 is of the form,
-4 -3
7ij = (constant) £ ~ + 0(§ 7) . (2.48)

The constants are defined in Appendix F. It would seem that the
contribution of the stress terms (Eqn. 2.31) for the case of a semi-
ellipse where u~§~(1—t2)1/2 would be unbounded and to the -3/2 power
rather than -1/2 as predicted by Eqn. 2.37. However when the terms of

Eqn. 2.31 are combined, the two leading order terms cancel and we are

left with the singular nature predicted by Eqn. 2.37, see Appendix F.
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Table 2.1 Crack profiles approximating a constant
depth using Eqns. 2.46,47.

Rectangular Profile (£ = .6)

M 1 3 5 10 20 exact
t
.0 .6000 .6000 .6000 .6000 .6000 .6000
.1 .5985 .6000 .6000 .6000 .6000 .6000
.2 .5939 .6000 .6000 .6000 .6000 .6000
.3 .5860 .6000 .6000 .6000 .6000 .6000
.4 .5744 .5997 .6000 .6000 .6000 .6000
.5 .5584 .5987 .5999 .6000 .6000 .6000
.6 .5367 .5858 .5996 .6000 .6000 .6000
.7 .5070 .5882 .5980 .6000 .6000 .6000
.8 .4648 .5689 .5806 .5993 .6000 .6000
.9 .3961 .5170 .5579 .5800 .5992 .6000
.96 .3353 .4536 .5037 .5585 .5898 .6000
.98 .2677 .3705 .4200 .4862 .5440 .6000

Table 2.2 Crack profiles approximating a semi-
ellipse using Eqns. 2.46,47.

Semi-Elliptic profile, (¢ = .6(1-t%)1/2)

M 1 3 5 10 20 exact
t
.0 .6000 .6000 .6000 .6000 .6000 6000
.1 .5985 .5870 .5970 .5970 .5970 .5970
.2 .5939 .5879 .5879 .5870 .5879 .5879
.3 .5860 .5724 .5724 .5724 .5724 .5724
.4 .5744 .5501 .5499 .5499 .5499 .5499
.5 .5584 .5202 .5196 .5196 .5196 .5196
.6 .5367 .4818 .4801 .4800 .4800 .4800
.7 .5070 .4335 .4202 4285 .4285 .4285
.8 .4648 .3726 .3630 .3601 .3600 .3600
.9 .3961 .2015 .2736 .2636 .2617 .2615
.95 .3353 .2304 .2122 .1954 .1888 .1873
.98 .2677 .1802 .1587 .1387 .1267 .1194
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Table 2.3 Normalized stress intensity factors for
the crack profiles given in table 2.1 for applied
tension.

Rectangular Profile (£ = .6), Tension
M 1 3 5 10 20 ©

.258 .271 .272 .273 .273 .273
.258 .270 .272 .272 .272 .273
.256 .268 .269 .270 .270 .270
.253 .263 .265 .265 .266 .266
.249 .256 .258 .259 .259 .259
.243 .246 .250 .249 .249 .250
.236 .235 .237 .238 .238 .239
.225 .219 .220 .221 .222 .222
.210 .199 .197 .197 .198 .199
.185 .172 .166 .161 .161 .163

5 .163 .151 .145 .136 .130 .132
.98 .138 .128 .124 .117 .107 .098

COORTDTAWN Ot

Table 2.4 Normalized stress intensity factors for
the crack profiles given in table 2.1 for pure
bending.

Rectangular Profile (§ = .6), Bending

M 1 3 5 10 20 ®

t

.0 .144 .152 .153 .153 .153 .153
.1 .145 .151 .152 .152 .152 .152
.2 .146 .148 .149 .149 .149 .149
.3 .148 .144 .144 145 .145 .145
.4 .151 .136 .137 .137 .137 .137
.5 .154 .126 .126 .126 .126 .128
.6 .158 116 .114 .114 .114 .114
.7 .162 .103 .097 .958 .096 .096
.8 .165 .093 .077 .071 .071 .071
.9 .166 .087 .060 .040 .034 .033
.95 .161 .089 .060 .029 .012 .006
.98 .150 .081 .066 .034 .009 -.013
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Table 2.5 Normalized stress intensity factors for
the crack profiles given in table 2.2 for applied
tension.

Semi-elliptic Profile (§O = .6), Tension

M 1 3 5 10 20 ®

.258 .246 .245 .245 .244 .244
.258  .246 .245 .244 .244 .244
.256 .245 .244 .243 .243 .243
.253  .243 .243 .242 .242 .242
.249 .241 .240 .240 .239 .239
.243 .238 .236 .236 .236 .236
.236  .234 .232 .231 .231 .231
.225 .228 .226 .225 .225 .225
.210 .218 .218 .217 .217 .217
.185 .201 .206 .208 .208 .207
.95 .163 .184 .193 .201 .204 .203
.98 .138 .162 .173 .189 .200 .205

WO U W = Ot

Table 2.6 Normalized stress intensity factors for
the crack profiles given 1in table 2.2 for pure
bending.

Semi-elliptic Profile ({0 = .6), Bending

M 1 3 5 10 20 L

t

.0 .144 .135 .134 .133 .133 .133
.1 .145 .136 .135 .135 .135 .134
.2 .146 .141 .140 .139 .139 .139
.3 .148 .149 .148 .147 .147 .147
.4 .1561 .160 .159 .158 .158 .158
.5 .1564 176 .175 .174 .174 .172
.6 .158 .191 .190 .189 .189 .189
7 .162  .209 .210 .209 .209 .208
.8 L1656 .227 .233 .233 .232 .231
.9 .166 .239 .253 .261 .261 .259
.95 .161 .236 .257 .274 .281 .280
.98 150 .219 .244 .273 .293 .302
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Figure 2.1

The shell geometry.
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Figure 2.2 Representation of the two-dimensional
stress state in the net ligament with stress
resultants for the mode 1 problem.
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Figure 2.3a Force and Displacement quantities as
defined by plate or shell theory that are used in
the mode 1 line-spring model.
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Figure 2.3b Force and Displacement quantities as
defined by plate or shell theory that are used by
the line-spring model for mode 2 loading.
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Figure 2.3c Force and Displacement quantities as
defined by plate or shell theory that are used by
the line-spring model for mode 3 loading.
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Figure 2.4 The superposition used to solve part-
through crack problems with the line-spring model.
All solutions are obtained for the problem in the
lower right (the perturbation problem) where the
only loads are applied to the crack surfaces.
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Figure 2.5 The corresponding plane strain problem.
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CHAPTER 3

Through Cracks in Plates

In this chapter the singular integral equations for a cracked
plate under both symmetric (mode 1) and skew-symmetric (modes 2,3)
loadings will be derived. The plate theory includes transverse shear
deformation. For mode 1 loading there is very little to add to the
existing literature [6,9-13]. The thin plate limit examined in these
papers will be reconsidered. For the skew-symmetric case stress
intensity factor solutions found in Refs. [14,15] for a single crack
will be supplemented. Also some results for the double crack case

will be presented.

3.1 Formulation
The governing equations, both dimensional (Eqns. 3.1a-16a, 18a,

19a) and non-dimensional (Eqns. 3.1b-16b,18b,19b) are listed below.

The dimensional relationships are defined in Appendix A. From
equilibrium
oN oN oN oN
11 . 12 =0 XX + Xy =0 , (3.la,b)
Bxl 6x2 ' Ox dy
oN oN oN oN
12 22 _ X Yy _
ax1 + axz o , ax " 3y o , (3.2a,b)
ov av
1,2 = -
ox, " Bx, alxyrxg) =0,
ov av
12(1+v
axx + ayz + (5+ ) q(x,y) =0 , (3'3a‘}b)



axl * ax2 - V1 =0,
auxx BMXX 5
3y * 3y ~ 12(1+0) Vx =0 , (3.4a,b)
6M12 3M22
dx,  ox. v2 =0,
1 2
aux oM 5
—-—xax + -—uay - m vy =0 , (3.53,b)

where q(x,y) is normal loading to the plate surface. The other
variables are standard plate quantities (see Fig. 2.3). From

kinematical considerations,

S :iin r Exx T % ’ (3.62,b)
€99 = :—:%D , Eyy = %;1 , (3.7a,b)
bR g2 o -d B k] e
6, = ::i” c By . 0, = %‘i c B (3.9a,b)
6, = ZL—EQ + By s O, = %% B, (3.10a,b)

where 01 and 92 are the total rotations of the normals. For classical
plate theory they are zero showing that normals to the plate surface

stay normal, i.e. there is no deformation transversely. The

constitutive relations (Hooke’s law) are,
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1o L

heyp =5 (Bqp - WNge) 0 6w Ny - Wy (3.11a,b)
21 _ _ i

hegg = (Ngg ~ WNjp) € = N - Ny (3.12a,b)
_ L _

hejg =25 Mg v €y = (N, (3.13a,b)

where E is Young’s modulus and v is Poisson’s ratio. From plate

bending,
06, 95
M].l:D 'ax_+]/W ,
1 2
0f 3p
Mex = 1 5 5%t Yays ] ) (3.14a,b)
12(1-0%) * %X y
Xy )
ap ap
- — et st | (3.15a,b)
YYoog4) PO Oy
v b [ % % ]
12 ~ 2 Ox. Ox, !
0 0p
I S B S ]
Mxy T 24(1+v) [ by T dx ) (3.16a,b)
where,
3
b= — 2 (3.17)
12(1-v%)
The linear transverse shear stress-strain relationships are,
01 =3V b=V (3.18a,b)
1 hB'1 ’ “x x . ,
% =13 ¥ o, =V (3.19a,b)
2 hB 2 y y '’ . ,
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where

5B
B= 1200

From here on only the non-dimensional variables will be used.
¢(x,y) such that

2 2 2
W 0% % %

XX ay2 Ty a2 Xy “dxdy

(3.20)

Define

(3.21)

and Egns. 3.1b,2b are satisfied. Next combine Eqns. 3.6b,7b with

3.11b,12b to obtain,

QU N N, PN - N
X XX vy Oy yy XX

Next use Eqns. 3.8b,13b to write,

(1+U)ny - % [ %5 ¥ %% ] !

or

63u . a3v ]

32
(1+v) 5 5
Oxdy Oydx

21
axanyy T2 [

After substituting 3.22 into 3.24 we obtain,

52 . 62Nxx 92N
(1+V)ax6nyy T2 {[ ay2 - 6y2 ] *
[ 32N aZNxx ]}
XX
6x2 3x2
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)




2o, 8 (3.27)

Next using 3.3b-5b we can write,

%M 3% a2
XX P X

5 * 2 gy + q(x,y) =0 . (3.28)
Ox O0x0y Oy

Substitute Eqns. 3.14b-16b into 3.28 to obtain,

3 3 3 3
8°p, 0°p, 3°p, 8P,
+ + +

ax3 2 2

3 + 12(1—V)2q(x,y) =0 . (3.29)
9x~ 0y Oy 0y “0x

Look at the following expression from the first two terms of Eqn.

3.29,

3 3
0 Fy . op - 82 éfl . égx
8x3 6x26y 6x2 Ox Oy

(3.30)

Substitute for px and py according to Eqns. 3.9b,10b together with

3.18b,19b,
83p  op 2 OV, .2 OV .2
X _ v _ ¥ "x _¥%w vy _ 3% (5.513
ax3 ax26y ax2 L ox ax2 Oy 6y2 J

Next use Eqns. 3.3b and 3.27 for substitution into 3.31 to obtain,

3 3
0" p 8" p 2
X, ¥ o & [ 1200 gy - v | (3.32)
Bx3 ax28y 6x2 [ 5 ]
Similarly,

3 3
e L T [ 12(1+v)
)2 5

e ale,y) - Ve | (3.33)
Oy dy“@dx 0

Eqns. 3.32,33 are now substituted back into Eqn. 3.29 to obtain,
vie = { 12(10) 2, 12(1- Jatx,y) (3.34)
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Next use Eqn. 3.4b with substitutions from 3.14b,3.16b and 3.18b with

3.9b to write,

. ow _ 1 {12(1+U)
x Ox 12(1_1/)2 5

Similar substitutions with Eqn. 3.5b leads to,

, Ow 1 {12(1+V)
Yy ja(1-m)? 5
After defining the constants,

o1 o1
- _ ) ’
5(1-v) 12(1_1/2)

and the new unknowns,

6. op
n(x)Y) :#_-a—;x )

8p, p

. X

by =525t | v,

Eqns. 3.26,34,35,36 becone,

vl -0 |
V4w =0 |,
2y -w=0 ,
e

where q(x,y) has been assumed to be zero.

introduce the Fourier transform,

+00

[ sl

$(x,a)

2
v ﬂx +

vzpy .
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(3.

(3.

(3.

(3.
(3.
(3.

(3.

(3.

35)

36)

37)

38)

39)

40)
41)
42)

43)

To solve Eqns. 3.40-43 we

44)




¢(x,y) = = [ B, P (3.45)

with identical defiritions for w(x,y), ¢(x,y) and 0(x,y). After

making use of the relationships,

+00 . 27 _
[ Vrpne@ay =L - aP T
—00 ax
+00 . 47 23 -
[ Veyet®@ay = TL 22 8L Lt T (3.46)
—00 Ox 0x

Eqns. 3.40-43 are reduced to the following ordinary differential

equations,
0%, 20% | 4
¢ 2?28 .4% -0, (3.47)
0x Ox
4- -
0% 222X, %0, (3.48)
Ox Ox
2_
d 2-\ = -
X { g—g - % } ~¥-%=0 , (3.49)
X
x LY { o’ _ o2 } “f=0 (3.50)
2 1,2

Assuming symmetry of loading and geometry with respect to x, the

transformed solution for x>0 of Eqns. 3.47-50 is,

ooy = L [ [ @e 't s h@xe '] e i¥aa , @s)
1 e -lalx -lalx] -iay

w(x,y) = o7 J [A3(a)e + A4(a)xe | e da , (3.52)

¥x,y) = o f {[Ag@ + @lale - A @]t -
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2 ..1/2 .
C(a)exp[—x[ﬁg;il] ]}ehlayda , (3.53)
Q(x,y) = %; J+ As(a)e_Rx e 1y, , (3.54)
where
1/2
R - [ a4 ZTT%ZT ] . (3.55)

For either the symmetric or the skew-symmetric problem there are five
conditions with which to determine six constants, Ai(a), i=1,...,5,
and C(a). This shows that one constant is extra and we take

C(a) =0 , (3.58)
and proceed to show that the problem can be uniquely solved without
it. Now that the four unknowns, w,$,¥, and {1 are known in terms of
the five unknown coefficients, the other plate variables are expressed
in terms of them. Nxx’ Nyy’ and ny are already expressed in this

form in Eqn. 3.21. The other important expressions are,

1-vofl 0
px = L'—E—‘ é-y' + 55 y ‘ (3’57)
_ 1von By
py - R Bx T ay (3.58)
2 .2 2 2
_ (-»n” o°n 37y .9
M =7 { e By 12 + ay2 } ) (3.59)
2 .2 2 2
(1-v) 0710 07y )
M == ’7 K + + ) (3'60)
vy { 2 Ox0y ay2 ax2 }
2 2 2
1 1-v | 0701 070 3"y
YRy g S P (3.61)
xy ~ 24(1+v) { 2 [ ay2 ax2 ] 0x0y }
_dw . 1-von , By
Vx =3t g By * By (3.62)
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Vy =%y %2 bx oy (3.63)
2 3 3

R I -
Oy 0y“0x Ox

v 0% %

3y .2 Y2 - (3.65)
Y oax dy

Now if Egns. 3.51-54 are substituted into Eqns. 3.21,57-65 the result
is,

+00

1 2 “lalx_-i
Nex™ “2x J_wa [Al(a) * xA2(a)}e VX g (3.66)
yy 2rJ) U071 2 ) .
+00
' “lalx -
1-v -i +00 R s
b= #3 ar | ahg@e ™ o
1 - 2 -latx -
T J_wllalAB(a)—(2a rxlals)A @ e e e, (3.69)
1w 1 (7 Rx _-iay
p, = v5” 5 J_mRAs(a)e e 1Wgq -
T J+W“[’A (a) + (2lals - A, (@) ]e” ¥ 1V aq (3.70)
2r J 3 4 ) .
+00
_ 1 2 i )
M -1 jw“{(1 v)a®[(2elal-x)A (@) - Az(@)]

2lalh,(@))e *1%e W g .
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+00

+ %5(1~u)2§§ J aRAS(a)e‘Rxe’lay da (3.71)
- 00
-1 (7 2
W, = 5 I_w{(lvu)a [(2r1al-x)4,(a) - Ag@)] s
2vlalh (@)} @' X da -
w, 2i (7 Rx_-iay
- o (1-v) 55 J aRA_(a)e e da 3.72
2 ox ) _ORAg( (3.72)
e 2 lalx -i
o B _1_ _ _ -{alx —1ay
My = 115 j_ma[(xlal 2xa%-1)A () + lalag(@)]e " * e da
IR ()2t I+m(a2+R2)A (@)e X1 gq (3.73)
4 2r ) 5 ! ’
+00
_ K 2 -lalx _-iay
Vx = -3 Juwa A4(a)e e da -
K i e Rx -ia
- —(1_1/)—1— J aA,. (a)e Xe 1% do 3.74
21 ¥oy | s (3.74)
+00 l | .
Vy = —iﬁ J aIaIA4(a)e_ 21Xe18Y 4o +
- 00
T j+wnA5(a)e‘Rxe“1”Y da (3.75)
L —00
2 +00

&y _ L2 1w)lalh (a) + Az(a)(-1+u—|a|x(1+u))]e"“'xe‘iayda

(3.76)

ov _ L I+m[(l+u)a2A (a) + A, (@) (-2lal+xa®sva®x) e @ Xe iy

oy “ar ) 1 2 X xJje e Taa
(3.77)
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3.2 Symmetric loading, Mode 1.

The symmetry conditions are,

Ny (0) =0, (3.78)
M (0,y) =0 (3.79)
V.(0,y) =0 . (3.80)

After using this information in Eqns. 3.68,73,74 we obtain

A (a) = T%T Ay(a) (3.81)
2 2

Age) = He=R)y o) (3.82)

As(@) =12 8,(a) . (3.83)

This eliminates three of the five unknown constants leaving only A2(a)

and A4(a). The following two mixed boundary conditions will determine

them.
N, Oy) =-f;(0) , yink (3.84)
u(0+,y) =0 , y outside of Ln , (3.85)
Mxx(o*,y) =-f,(y) , yinL (3.86)
px(o*,y) =0 , youtside of L, (3.87)
where
L, = (a;,b)), (ag,by), -ooy (a,b) (3.88)

each section (ai’bi) defining a crack on x=0. Note that since all
length quantities are normalized with respect to the plate thickness

h, each section is actually (ai/h’bi/h)' After using Eqns. 3.81-83 in
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Eqns. 3.66,76,71 and 69 we obtain the following,

- lim -1 - -lalx -iay
N ©:¥) = 50 ox _m|alA2(a)e e da , (3.89)
2 . +00
0"u lim -1 I 2 -lalx_-iay
Ou = = 27, (a)a"e e da |, (3.90)
ayz x= x+0 27 o 2
_ lin 78(1-») I“{[ 2 g1 2 (B2 ) clalx
M 0,5) = 507 or B 2a |a|+|a|n(1_y) e
- 22%Re ™} A, (@) da (3.91)
p (0,y) = lim -1 +°°A (a) [2xa2e-Rx_K(a2+R2)e—la'x]e—iay da
T el (3.92)

Note that Eqns. 3.89,90 are uncoupled from 3.91,92 for simple fi(y) in

the mixed boundary conditions 3.84,86.

3.2.1 Tension.

The singular integral equation for tension will be derived first.
Consider Eqn. 3.90.

+00

- L J —2A2(a)a2e_iay da . (3.93)
0y~ x=0 -

From Eqns. 3.44,45 we invert 3.93,

2 32 iat
~20"A,(a) = J gup 8%y (3.94)

-o 6t2 x=0
and then integrate by parts twice noting that u(t) is zero at

infinity.

* 3 iat
u ia

AT e d

® ot

—2a2A2(a) = -ia J
x=0

t o, (3.95)
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+00 .
= —a2 I u(t)elatdt , (3.96)
-00

or
Aa) = 2 [ u)el®as (3.97)
2 2 L
n
where use has been made of Eqn. 3.85. Now A2(a) is substituted into
Egn. 3.89 and the displacement u(t) becomes the only unknown in the

problem. After defining

u (6) = u(t)
we have,
lim -1 (*"lal iat lalx -ia
im - 1 - X -1
N (0,y) = 2L gt jL u ()e Pt ¢ 12Xy | (3.08)
n
or
lim -1 **lal -lalx ia(t-y)
im - - X 1 -
N (0,y) = 1in oL IL ul(t)I_m—g—e R R T T T
n
Next using
lin (™" 2
xig acosa(t—y)e—axda = — 3 (3.100)
(t-y)
Eqn. 3.99 becomes,
1 u, (%)
Ny = L Sdt , forally , (3.101)
L (t-y)
or
£ ( 1 4 dt , f in L (3.102)
- (y) = 5= % , fTor y in . .
1 27 L (t—y)2 n

n
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For a single crack in tension Egqn. 3.102 becomes,

00
Lo m® e Ny g
2r % 2 dt = fI(Y) B ﬁxx " hE T E (3.103)
-a (t-y)
The solution 1is
g, 2 2.1/2
u(y) = 2§ (a®-y") (3.104)

If we substitute this back into Egqn. 3.101, the stress in front of the

crack is,
o w 2 2.1/2 %
1) _ 1 +a2 g 13;;1_1_1 gt = ¢ { _ Iyl 1} (3.105)
E 2n E 2 E 2 2.1/2 : :
-a (t-y) (y™-a%)

To determine the stress intensity factor, we use Eqn. G.10,

k= 02 2oV 0 (3.108)
. ™ 1/2
_ lim _oy[2(y-a)] - (3.107)
y+a (y+a)1/2 (y_a) 1/2
Therefore
Ky

_ 1 (3.108)

g la

Now determine the stress intensity factor using Eqn. G.11.

g 1im 1 B lin, 8 @22 e
k= Ko7 yoa =5 o 2 B =g la , (3.109)
2 2Gya) 77 12(y-a)

where the following substitutions have been made,

3-v _ E
oy ' B= 2(1s0) (3.110)

Therefore using either stress or displacement the result is the same.

This should not be taken for granted because the equations predicting
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stress and displacement are from plate theory, while the stress
intensity factor is defined in terms of elasticity theory. It is
important to note that the <classical plate theory is identical to
Reissner’s theory for tension, Egn. 3.101.

In Fig. 3.1a at the end of the chapter the stress intensity
factors for two identical cracks with a/h=1 are plotted for varying

separation distance.

3.2.2 Bending.
For the bending problem from Eqn. 3.91

+00

£.0,3) = uy(y) = L [ A, @502 rYe P . (3.111)

After 1inversion, making use of Eqn. 3.55, A4(a) in terms of the new

unknown, u2(t) is,

Ag(e) = 2 ) uy(t)e ®de . (3.112)

n

This is substituted into Eqn. 3.91,

L (0,3) = hm 1/5(1 1/) j uy (8) f:{[zaz'“'*ﬁ%ﬂe_'alx

- 20%e 10 (5 gg g (3.113)

After using Eqn. 3.100 and the following integrals,

lim (*° 3 ~axy, _ __6
x—0 a“cosa(t-y)e da = 1 (3.114)
0 (t-y)
R +00
iig azRe_Rxcosa(t—y) da = —————————{—1[K (ple-yl)-
) 298 (1-v)
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Ko(ﬂlt—yl)] 20Dy p1ey) (3.115)
(t-y)
where
_ [___2_]1/2 _ 101/
F=GEan = (10) , (3.116)
we obtain
127&(1—V17 j(l u)(3+u)
' (0Y) = o (t)
& I L_ ¢ (t-y)* (t-y)”
A (ple-y)-Ky(p1t-y1)] + —giil—gle(ﬁlt y}dt (3.117)

which is valid for all y. K2 and KO are modified Bessel functions of

the second kind. If y is in Ln’ we use Egn. 3.87 to write,

2 u,(t)
£, (y) = WA } 2 4¢ + L JL uy (1)K

2 27
L (t-y) n

0p(¥,t) dt , (3.118)

where

2
Kyp(y,8) = Hn(ple-yly + {2102 12002n) Sy (pie-y))-
(t-y) (t-y)

K (Ple-yD)] + —%iil—ﬂlxz(plt 1) - Bnpreyn} (3.119)

It is convenient to write this Fredholm kernel in terms of a single

variable,
5K(z) _
22(Y1t‘) 12(1+U) y Z = ﬁlt—yl ) (3120)
where
-48 4 24
K(2) = {—ZZ SR ACRENORE Ky(2)} - (3.121)

52




To show that K(z) is a Fredholm kernel, the small z expansions for the

Bessel functions are,

Ky(z) ~ -1n(2/2) - 7, - (2/2)%1n(2/2) + 0(z2) . (3.122)
K,y(z) ~ 2/2° -1/2 ~1/2(2/2)%1n(2/2) - 1/2(2/2)(7,+5/4)

- 1/6(z/2)%1n(z/2) + 0@z (3.123)
where Euler’s constant, Te = .5772157....  Substitution of these
expansions into Egn. 3.121 leads to the following behavior for K(z),

iig K(z) ~ {1n(Z/2)+(7e—23/4)+(z/2)21n(z/2)+...} : (3.124)

For simple plate bending,

=3
Q8

—

1
f2(y) - ﬁxx = ;__ -

(3.125)

=
I
=i

The log singularity has been separated from the Fredholm kernel,
see Eqn. 3.119. In such a case it was found helpful to handle this
part 1in closed form. However it is possible that the contribution of
the log term is nearly equal to, but of opposite sign as the rest of
the kernel. Separate treatment here could lead to convergence
problems especially for geometries (a/h approaching ® for Eqn. 3.118)
where the coefficient of the log term gets large. In many problems
this coefficient is small and a closed form analysis of the log is not
necessary. See Appendix I for the effect of this log behavior on the
numerical convergence. It should be noted that if the unknown were

the derivative of the rotation, this log term would be replaced by,

(t-y)1n(Blt-y1) , (3.126)
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which is non-singular and easier to integrate (see. Appendix I). This
is the least desirable feature of the strongly singular formulation.
The Fredholm kernel is essentially divided by (t-y), or alternatively,
the infinite integrals which determine the Fredholm kernel decay more
slowly by alfactor of a, see Appendix J, section 4. This means more
asymptotic analysis for equal decay between the two methods. For
example the infinite integral for the tension problem, Eqn. 3.100

would be replaced by,

lim J*” . —ax, _ 1
x20 ) sina(t-y)e “da = ty (3.127)

In most problems the infinite integrals must be evaluated numerically
so this factor of a becomes important, see Chapter 5.

For a single crack of half length a, Eqn. 3.118 may be written as

1 u (ér) +1
h (7 22" __5a 1 a @ )
24ar % 3 9t * 12h(1+0) 27 I u,y (gr)K(Fhir-sl) dr = -ﬁxx,
-1 (r-s) -1
“1<s<l . (3.128)
If we define
wt) =228 g = 2fr sl =z = fltoyl (3.129)
2 " Th “xx B » $ 7 q vyt .
the equation becomes,
1 +1 :r] 5 2 +1
28 o2 T T /) J gk dv -, (3.130)

This equation must be solved numerically, see Appendix E for an
explanation of the collocation method. From section 2 of Appendix G,
and Eqn. 3.130 the stress intensity factor (actually the maximum value

at the plate surface) will be given by,
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L__tq) =11 , (3.131)
50
where
g(r) = £(r) (1-rd)Y2 | L1 (3.132)

The stress intensity factor of Eqn. 3.131 is predicted by either
stresses (Eqn. G.10) or displacements (Egn. G.11).

The governing equations for classical plate bending are identical
to 3.1-20 with the exception that the transverse shear deformation,
Gi in Eqns. 3.18,19 are zero, or B (Eqn. 3.20) is infinite. The
symmetry conditions, Eqns. 3.78-80, cannot be separately satisfied.

For classical plate bending,

ny(O,y) =0 , (3.133)
oM
—5§1 +V (0,y) =0 . (3.134)

The result of this formulation for the determination of the rotation

is,

+1 u, (3r)
3w ho1 (TGN e

1+v 24a 7 2 , ~IKs<l (3.135)
-1 (r-s)
or in terms of g(r),
34 e )
1y % dt = -1 . (3.136)
+Uﬂ'

-1 (r- s)

This equation can be solved in closed form.

(3.137)

05(y) 32 { lyl

— 1 ,
[y2- (a/n)?)1/2 }
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1+v 242 "2 h )2
u2(y) = B:V “h 6E 1 - [EY] , -a/h<y<a/h . (3.138)
Eqn. 3.137 predicts
k1
1.5, (3.139)
02 a
while Eqn. 3.138 predicts
k
1 1+v
= (3.140)
R PR

This inconsistency shows that the classical plate theory is inadequate
to solve for crack tip SIFs for bending. It is also true for out-of-
plane shear and for twisting.

In Fig. 3.2 the normalized stress intensity factor as a function
of crack length to plate thickness ratio is plotted for Reissner’s
theory. Table 3.1 1lists some values. Note that for large h/a the
linit is one, the same as the classical prediction using the stress
intensity factor defined in terms of stress, Eqn. 3.139. The other
limit, the thin plate limit, is not so clear. It has been reported by
[6] that in the limit as h/a goes to zero, the stress intensity factor
for the Reissner plate, (Eqn. 3.131) approaches the value (1+v)/(3+Vv)
as predicted by Egn. 3.140 from the classical theory, (note that h=0

is not valid for Reissner’s theory). Another way of putting this is

" that Eqn. 3.130 becomes 3.136. The evidence provided by table 3.1 for

a/h = 1000 seems to indicate that this is not the case. Numerically
it is very difficult to obtain convergent results in the long

crack/thin plate domain using the methods of Appendix E, and for
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further results some kind of asymptotic analysis with a specially
suited numerical scheme seems appropriate. As an aside, for this
geometry, a power series (Eqn. E.29) was not adequate using single

15, for

precision (14 digits). The coefficients were as high as 1.X10
example see table E.1. The problem was solved using Chebychev

polynomials. The following analysis is provided to support the claim

that the curve in Fig. 3.2 does not "reach" the value (1+v)/(3+v).

3.2.3 Thin Plate Bending.

We consider the large a/h limit of Eqn. 3.130. Only the Fredholm

kernel need be analyzed. First define

+1
1s2/h) = oy @/ | k() ar

+1
B OO (3.141)

where p=f(a/h) is introduced for convenience. From Appendix H,

oam I(s,2/h) = 775y j( ) 5 4 = 7153 J( gi—l dr ,lsld,
(3.142)
- (r)
- 1’(1+V) I -1 (i s)2 dr = T a1y ) dr I?:L;)
=7 |,y "near" 1, ie. p(1-y) = 0(1) . (3.144)

If Eqn. 3.142 were valid for |Isl=h/alyl<1l then in the limit as p
approaches infinity, Eqn. 3.130 would be identical to Eqn. 136 and
therefore the stress intensity factor would be (1+v)/(3+r). But this

is not the case. Figs. 3.3a-c compare I(s,a/h) to the limiting
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integrals above. The numerically determined function for g(r) was
used to compute these 1integrals. See Figs. 3.4-5 for plots of
g(r),f(r) as defined in Eqn. 3.132, and Fig. 3.6 for the ratio of g(0)
from Reissner’s theory to g(O)‘from the classical theory. Also see
table 3.2 for numerical values of this ratio. This table shows that
in the limit as h»0, Reissner’s theory behaves like the classical
theory away from the crack tip. With regard to Fig. 3.3, the distinct
difference between I(s,a/h) and the limiting integrals is that
I(s,2/h) is continuous at s=1. The "spike" created when I(s,a/h) goes
from 1~ to 17 gives a contribution to the stress intensity factor that
makes it different from (1+v)/(3+v). This contribution is of
significance because it is located at the crack tip. In order to
proceed further in the analysis, the area of the spike, which would
represent a normalized force (or couple), must be determined.

Consider the following:

y _ lim [*1{___23__1 SN
T oprw 0 27 (1+v) (s,a/h) + 3+y s, (3.145)
. 2 +1 +1
1 g 2
= p-l): 2[(14_”) J lg(r) JO K(g)ds dr + 3+u ) (3146)

. 1
lim ¥ -16 4 8 2
=p ZE(177) _lg(r){'“:z RSO IRV
u (3.147)

Again the behavior of this integral near r=1 makes it difficult to
analyze. Note that the order one contribution to M coming from the

"outer solution" of g(r), Eqns. 3.129,138, drops out.
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The limiting value of the stress intensity factor was not found
but we can make the following conclusion. Since I(s,a/h) for Isl>1
has the behavior of Eqn. 3.143,

lim 1lim
p+w s+1

+ I(s,a/h) ~ h_}s_ ’ (3.148)
where from Eqn. 3.143, it may be stated that

lim lim I(s,a/h) ~ I;q . (3.149)

pre s+l
This order analysis is supported by Fig. 3.3. This tells us that the
magnitude of the integrated Fredholm kernel, i.e. I(s,a/h), which
represents a normalized stress resultant term, (actually a couple),
becomes infinite according to Eqn. 3.149. Again since we are dealing
with a region where p(1-s) is of order one, the "thickness" or support
of the spike is of order (l-s) or pul. Therefore the area under the
spike, given by eqn 3.147, which represents normalized force, should

_1/2. In order to determine the stress intensity

go to zero as p
factor for h/a approaching zero the coefficient of this leading order
term must be known. If the area were of order one, the contribution
to the stress intensity factor would be of order (1—5)-1/2, see Sih
[72]. If the value of stress resultant were of order one, the area
would be zero and there would be no contribution. But the limit is
between these two cases and the contribution is finite, probably
resulting in a stress intensity factor that can be drawn within the
space provided by the lower plot of Fig. 3.2.

Some other results for the bending problem are given at the end of
the chapter. In Fig. 3.7 the normalized bending stresses ahead of the
crack tip are plotted for a/h=1 and 10 (Eqn. 3.117). 1In table 3.3
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some results for crack interaction are listed for four different crack
length ratios, (this table may also be found in [59]). Fig. 3.1
provides a plot of the interaction of equal length cracks where a/h=1
for tension, bending, out-of-plane shear and twisting to compare how
strong the interaction is for the various loadings. In-plane-shear is

identical to tension, (shown later in this chapter).

3.3 Skew-Symmetric loading, Modes 2 & 3

The symmetry conditions are

N (05¥)

o, (3.150)

M (0,y)

I

0 . (3.151)

After using this information in Eqns. 3.66,71 we obtain,

Aj@) =0, (3.152)

A(a) = {2n|a|+zij;%TET}A4(a) PR () (3.153)

This eliminates two of the five unknown constants leaving only
A2(a),A4(a) and As(a). The following mixed boundary conditions will

determine them.

Vx(0+’Y) = _fs(y) , ¥y in Ln ’ (3.154)
w(0+,y) =0 , y outside of Ln , (3.155)

+ .
ny(o ;Y) = —f4(Y) y ¥y 1n Ln. ’ (3-156)
v(0+,y) =0 , vy outside of Ln , (3.157)

+ .
Mxy(o ,y) = -f,(y) , yinlk (3.158)
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ﬁy(0+,y) =0 , y outside of Ln . (3.159)

If Eqns. 3.152,153 are substituted into Eqns. 3.52,68,70,73,74 and 77,
the quantities appearing in 3.154-159 may be expressed in terms of the

unknowns as follows:

+00
_ -k 2 -lalx -iay
Vx(x,y) = J_wa A4(a)e e da

+00
. Ry i
s(1-)57 J_maAs(a)e X' ®da (3.160)
1 e 2
W(X’Y) 2, J_N{A4(a) [2IC|(Z|+ —(m + x]
! -lalx_-i
g@ian oIy .
N (x,y) = 5 Jma(l -xlal)A, (a)e -lalx -iay,, (3.162)
xy Y S om ) ) .
+00 _
%T; = 2—11[ J A2(a) [azx—2lal+uxa2] e—lalxe—myda , (3.163)
- 00
+00
i 2
Mxy(x’Y) = —7(1—11)2—-: J_N{A4(a) [xalal -a+ l—a;]
Q) Rlala @) e 21X W g
- T 21 J (a%+8? A (@)e Rxg-itvgg | (3.164)

+00

pyxv) =5 | {A @ [x woar) *

-lalx -i 1 (*” -Rx_-i
- R @]e e W an + E1n)5E J-wRAs(a)e X~y g,
(3.165)
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Note that ny is uncoupled from Mxy and Vx. The integral equation for

ny can be seen to be the same as for tension, compare Eqns. 3.89,90

with 3.162,163. The result for

ug(t) = v(0',t) , (3.166)
is

Ny O = 3 f Sdt , forally (3.167)

L_(t-y)
or
1 uy (t) .
—f4(y) = oF % 5 dt , for y in Ln . (3.168)
L (t-y)

For in-plane-shear,

R F
£,0) = ﬁxy = Klg =5 - (3.169)

All through crack results for tension are also valid for in-plane-

shear. To solve the coupled problem of Mxy and Vx’ first define

ug(t) = w(0',t) ug (1) = py(o*,t) . (3.170)

The unknowns A4(a) and A5(a) can then be expressed as,

A(a) = ALl ()12 gy (3.171)
L
n
A(a) = =28 _ [y ()e'®" at
5 kR(1-v) L 3
n
R [Zﬂg R —~—3—-] J )el? qt (3.172)
R sR(1-0)) ) ug(t)e ' ‘ A
n
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It remains only to substitute these expressions into Eqns. 3.160 and
164 and to evaluate the infinite integrals in a way similar to the

bending problem. The equations becone,

V0, = = JL {u3(t)[zz%;;§ +Kgg(2)] + g (1)K (2) )t

(3.173)
2
My ©009) = 5 JL {“5(t)[1fiff;% * Kss(z)] * “3(t)K53(z)}dt(é’174)
where

Kyg(2) = F{-In(2) + [Ky(2) - &5 |+ [fg@ « m@]},  @.a75)
Kyg(2) = B 35 o+ Ak, (00 4 kg2 (3.176)

K o (2) = IEI%IZT{ In(z) + [i% _ iﬁ v 4Ky (2) - 4Ky (o) - fg K, (2)
s In@@)] - [ (2) ¢ 2n(a)] ), (3.177)
Keq(2) = IET%QZT{ ;% o Ak, - K@) ) (3.178)

If Eqgns. 3.154,158 are applied to 3.173,174 the singular integral

equations become,

2u,,(t)
1 { 3~ ae s L JL {us(t)K33(z) N u5(t)K35(z)}dt = -£,()

21 Ln(t"')2 n (3.179)
2.1 ug (t) 1
1015 } —S—av s L j {us(t)Kss(z) . us(t)Kss(z)}dt
Ln(t—y) Ln
= A (y) (3.180)

The through crack loading for out-of-plane shear is,
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_ _12(1+v) _ 8(1+y) @
t,n =¥ =552 Y 55 73 (3

and for twisting,

=8
Q8

12
OB W

!’31‘0'

For small z,

Kyq(2) ~ ﬁ2{—1n(z/2)-(1/2 . 7e)—3/2(z/2)21n(z/2)+...} (3.

Ky (2) p{—z/21n(z/2)+(9/8-7e/z)z-2/3(z/2)31n(z/2)+...} ,(3.

5

Keg(2) iazi:zj{ln(z/2)+(7e+23/4)-(z/2)21n(z/2)+...} (3.

Ksa(®) ~ Torigyt (#/D1n(3/2)+ (1,/2-0/8) 2+2/3(2/2) *1n(2/2)+ .
(3.

The effect of this behavior on convergence is shown in Appendix I.

The collocation method was used to solve Egns. 3.179,180

f(y) given by 3.181,182 for a single crack, (tables 3.4-6, see

(3.

.181)

182)

183)
184)

185)

y.

186)

with

also

Ref. [15]), for two identical interacting cracks, (Figs. 3.1c,d), and

for two 1interacting cracks of different size, (table 3.7a,b).

The

notation for the double crack is given in Fig. 3.8a,b. For a single

‘crack, the stresses ahead of the crack tip are plotted in Figs.

3.9a,b.

64




Table 3.1 The effect of Poisson’s ratio v and
crack length to plate thickness ratio a/h on the
normalized bending stress intensity factor.

See also Figure 3.2. 0=6M/h2.

ky (h/2)
o {a

a/h v=0 v=.3 v=.5
.05 .9851  .9885 .9900
1 .9583  .9676  .9717
.25 .8735 .8992 L9111
5 .7804 .8193 .8383
.7020 .7475 L7707
.6518 .6997 . 7247
.6211 .6701 .6960
.6091 .6446 .6847
10. .5984 .6481 .6746
100. .5803 .6306 .6575
200. .6292
1000. .6276

O BN
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Table 3.2 The ratio of crack surface rotation for
Reissner’s theory to that of the classical theory
at the center of a cracked plate subjected to
bending, v=.3. See also Figure 3.6.

albh (08,0
+0 .538+(3+v) /(1+V)
892

.551
.394
.309
.255
.219
172
.142
.122
.107
.095
.079
.011
.006
.000

(S
Q0O IO WA N
COO0OQOOOoCOoOoOoQOULMOUIO WL

[y
Q
o

200.
1000.

»00

pk bk ok ok ok b ek ok pd b ok b ek ped ek bt DD
. .
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Table
plate with two collinear cracks. 0=6M/h2, v=.3

3.3 Bending stress intensity factors for a

b,-a

171 2 2
[ a= "5 = 1, ¢ = 5 d = a2-b1 ]
PLATE BENDING
d/a 0.1 0.25 0.5 1 2 ©
c/a
1 .8799 .8551  .8313 .8045 .7798 .7475
kl(al) 0.5 .8071 .7938 .7821 .7698 .7593 .7475
— 0.25 L7711 .7647 7598 .7551 .7513 .7475
ola 0.1 .7532 .7512  .7500  .7490  .7482 .7475
1 1.294 1.076 .9599 .8697 . 8049 .7475
kl(bl) 0.5 1.063 .9143  .8458 .7995 .7698 .7475
—— 0.25 .9161 .8220 .7863 .7663 .7550 .7475
ola 0.1 . 8088 .7678 .7563 .7514 .7498 .7475
1 1.294 1.076 .9599 .8697 .8049 .7475
kl(az) 0.5 1.012 .8405 .7498 .6786 .6261 .5794
— 0.25 .7990  .6595  .5867 .5297 .4872 .4496
ola’ 0.1 .5647 .4577  .4037 . 3627 .33256 .3060
1 .8799 .8551  .8313 .8045 .7798 .7475
kl(bZ) 0.5 .7395 L7071 .6771 .6434 .6132 .5794
0.25 .6275 .5867 .5507 .5135 .4816 .4496
ola 0.1 .4817 .4293 .3917 .3577 .3308 .3060
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Table 3.4 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting. 0,=3V/(2h), 0, =6M/b%, v=.3.

OUT-0F-PLANE SHEAR TWISTING

kz(h/2) k3(0) k2(h/2) k3(0)
ogla’  ogla ola” o da

a/h
.01 .0000 1.0009 .9991 -.0000
.05 .0007 1.0138 .9862 -.0003
| .0039 1.0398 .9587 -.0018
.25 .0336 1.1402 .8557 -.0121
.5 .1400 1.3223 .7056 -.0359
1.0 .4656 1.6760 .5218 -.0697
1.5 .8510 2.0142 .4186 -.0850
2.0 1.2615 2.3425 .3527 -.0913
3.0 2.1201 2.9800 L2732 -.0934
4.0 3.0067 3.6007 .2268 -.0910
5.0 3.9100 4.2099 .1961 -.0876
6.0 4.8249 4.8107 .1742 -.0840
8.0 6.6784 5.9938 .1448 -.0776
10.0 8.5539 7.1592 .1257 -.0722
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|

Table

3.
thickness

5 The

ratio a/h on the

intensity factors

[

»
. \
=

coocoococowo 6‘La53

OO0 U W =

OUT-0F-PLANE SHEAR

N W

effect

of crack length to plate

normalized stress

for out-of-plane shear and for
twisting. 0,=3V/(2h), o =6U/h%, v=0.

ko(h/2)  kg(0)

031_; 031—2.—
.0000 1.0009
.0039 1.0397
.1368 1.3232
.4442 1.6831
.8005 2.0321
.1765 2.3739
.9578 3.0431
.7609 3.6992
.5770 4.3463
.4022 4.9867
.0709 6.2529
.7568 7.5048
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TWISTING
ky(h/2) Kk, (0)
USK 055
.9989 ~.0000
.9471 -.0022
.6530 ~.0422
.4669 ~.0770
.3696 -.0910
.3095 ~.0959
.2388 -.0960
.1982 ~.0925
.1716 ~.0883
.1527 -.0843
.1274 -.0773
.1109 ~.0716



Table 3.6 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting. 04=3V/(2h), 0 =6M/h%, v=.5

OUT-0F-PLANE SHEAR TWISTING

k2(h/2) k3(0) kz(h/2) k3(0)
OBI;ﬂ 03I;q osfgf GSI;T

a/h
.01 .0000 1.0009 .9992 -.0000
.1 .0039 1.0397 .9640 -.0015
.5 .1414 1.3219 .7326 -.0327
1.0 .4761 1.6725 .5523 -.0655
1.5 .8765 2.0051 .4469 -.0814
2.0 1.3051 2.3263 .3782 -.0884
3.0 2.2049 2.9470 .2939 -.0916
4.0 3.1364 3.5486 .2441 -.0899
5.0 4.0870 4.1372 .2111 -.0869
6.0 5.0506 4.7164 .1874 -.0836
8.0 7.0049 5.8542 .1555 -.0775
10.0 8.9840 6.9720 .1348 -.0724
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Table 3.7a  Stress intensity factors for a plate
with two collinear cracks subjected to out-of-
plane shear loading. o = 3V/(2h), v=.3.

f a = bl "1 =1, ¢ = b2 "2 d = a,-b ]
L 2 ! 2 2 1
PLATE, OUT-OF-PLANE SHEAR
d/a 0.1 0.25 0.5 1 2 ®
c/a
1 1.763 1.702 1.675 1.669 1.673 1.676
k3(a1) 0.5 1.736  1.699 1.682 1.675 1.675 1.676
—— 0.25 1.708 1.688 1.679 1.676 1.676 1.676
ola’ 0.1 1.687 1.680 1.677 1.676 1.676 1.676
1 2.909 2.124 1.812 1.694 1.677 1.676
k3(b1) 0.5 2.349 1.906 1.745 1.687 1.677 1.676
0.25 2.028 1.783 1.706 1.680 1.676 1.676
oia 0.1 1.804 1.707 1.684 1.677 1.676 1.676
1 2.909 2.124 1.812 1.694 1.677 1.676
k3(a2) 0.5 1.348 .9231 .7425 .6719 .6613 .6611
—— 0.25 .6723  .4362 .3319 .2908  .2849  .2850
ola” 0.1 .2835  .1741 .1254 .1065 .1039 .1040
1 1.763 1.702 1.675 1.669 1.673 1.676
k3(b2) 0.5 L7705 .7069 .6722 .6596 .6598  .6611
0.25 .4039  .3387 .3020 .2863 .2846 .2850
ola’ 0.1 .2015  .1474 .1180 .1056 .1039  .1040
1 -.5879 -.5348 -.5040 -.4844 -.4739 -.4656
k2(al) 0.5 -.5214 -.4936 -.4791 -.4711 -.4676 -.4656
—— 0.25 -.4906 -.4767 -.4703 -.4672 -.4661 -.4656
ola 0.1 -.4731 -.4684 -.4667 -.4659 -.4657 -.4656
1 .0737 .1550 .2512 .3596 .4333 .4656
k2(b1) 0.5 .4199 .3945  .4087  .4365  .4573  .4656
0.25 .4979 .4566  .4521 .4579  .4635  .4656
ola 0.1 .4914  .4677  .4639  .4643  .4653  .4656
1 -.0737 -.1550 -.2512 -.3596 -.4333 -.4656
k2(a2) 0.5 . 2489 .1600 .0827 .0035 -.0480 -.0700
0.25 .2065 .1438 .0917 .0391 .0056 -.0084
oya 0.1 .1052 .0739 .0483 .0225 .0062 -.0004
1 .5879 .5348  .5040  .4844  .4739  .4656
k2(b2) 0.5 .2177 .1717  .1352  .1028 .0818 .0700
0.25 . 1442 .1087 .0748 .0409 .0189 .0084
ola’ 0.1 .0839 .0628 .0419 .0202 .0063 .0004
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Table 3.7b Stress intensity factors for a plate
with two collinear cracks subjected to twisting.

0 = 6M/h2, v=.3.
b,-a b,-a
17 ~Poay
[ a 5 = 1, ¢ = 5 d = a2—b1 ]
PLATE, TWISTING

d/a 0.1 0.25 0.5 1 2 ®

c/a
1 .5058 .5081 .5110 .5147 .5181 .5218
kz(al) 0.5 .5131 .5144 .5160 .5182 .5200 .5218
— 0.25 .5183 .5188 .5195 .5204 .5212 .5218
ola 0.1 .5210 .5211 .5213 .5215 .5217 .5218
1 .6748 .5826 .5432 .5239 .5192 .5218
k2(b1) 0.5 .6526 .5726 .5404 .5252 .5210 .5218
—— 0.25 .6104 .5524 .5322 .5238 .5216 .5218
ola 0.1 .5590 .5319 .5248 .5224 .5218 .5218
1 .6748 . 5826 .5432 .5239 .5192 .5218
k2(a2) 0.5 .4484 .3878 .3631 .3521 .3503 .3527
— 0.25 .2737 .2349 .2195 .2130 .2122 .2139
ola 0.1 .1269 .1065 .0986 .0955 .0951 .0959
1 .5058  .5081  .5110 .5147  .5181  .5218
k2(b2) 0.5 .3532 .3505 .3490 .3489 .3502 .3527
0.25 .2253 .2184 .2141 .2121 .2123 .2139
ola 0.1 .1105 .1019 .0973 .0953 .0951 .0959
1 .1035 .0958 .0877 .0792 .0732 .0697
k3(a1) 0.5 .0905 .0856 .0805 .0752 .0716 .0697
— 0.25 .0792 .0768 .0744 .0720 .0704 .0697
ola’ 0.1 .0721 .0714 .0708 .0702 .0699 .0697
1 .0054 -.0052 -.0234 -.0462 -.0619 -.0697
k3(bl) 0.5 -.0349 -.0337 -.0424 -.0559 -.0655 -.0697
0.25 -.0605 -.0554 -.0580 -.0638 -.0680 -.0697
ola 0.1 -.0702 -.0669 -.0671 -.0684 -.0693 -.0697
1 -.0054 .0052 .0234 .0462 .0619 .0697
k3(a2) 0.5 -.0304 -.0192 -.0073 .0057 .0141 .0179
——<- 0.25 -.0266 -.0177 -.0103 -.0032 .0012 .0030
ola’ 0.1 -.0137 -.0089 -.0054 -.0023 -.0005 .0002
1 -.1035 -.0958 -.0877 -.0792 -.0732 -.0697
k3(b2) 0.5 -.0452 -.0387 -.0320 -.0250 -.0203 -.0179
0.25 -.0221 -.0172 -.0124 -.0076 -.0045 -.0030
ola 0.1 -.0106 -.0076 -.0049 -.0024 -.0008 -.0002
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Figure 3.l1a-d Normalized stress intensity factors
in a plate with two identical collinear cracks of
half length a/h=1 loaded in temsion (a), bending
(b), out-of-plane shear (c), and twisting (d).

_ 2 _ _ 2
v=.3, alszx/h, 02—6Mxx/h , 03—3Vx/(2h), 04—6Mxy/h
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Figure 3.2 Normalized stress intensity factors in

a plate for bending, v=.3, 0=6Mxx/h2.
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Figure 3.3a-c Plots of the Fredholm integral term
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bending (Egns.

3.129, 140) for a/h=10 (a), a/h=100 (b), a/h=1000

(¢), (solid lines), compared to
Appendix E, (dashed lines).
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Figure 3.3 continued.
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Figure 3.3 continued.
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Figure 3.4 plots of the normalized rotation for
plate bending for a/h=10,100,1000 from Reissner’s
theory compared to classical theory, v=.3,

p(y/a) = (a/h) (G/E) g(y/a).
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Figure 3.5 plots of the normalized rotation
divided by the weight function, [1—(y/a)2]1/2 for
plate bending for a/h=10,100,1000 from Reissner’s

theory compared to classical theory, v=.3

B(y/a) = (a/h) (B/E)E(y/a) [1- (y/a)%1 /2.
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Figure 3.6 The ratio of crack surface rotation for
Reissner’s theory to that of the classical theory
at the center of a cracked plate subjected to
bending, v=.3. See also Table 3.2.
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Figure 3.7 Bending stresses in front of the crack
tip for a/h=.5,10. v=.3
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(b)

Figure 3.8a,b Geometry of the double crack for (a)
unequal length and (b) equal length cracks.
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Figure 3.9a,b Stresses in front of the crack tip
resulting from out-of-plane shear loading (a), and
from twisting (b). v=.3
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Figure 3.9a,b continued.
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CHAPTER 4

Part-Through Cracks in Plates

The singular integral equations for part-through crack problems
are obtained directly from the corresponding through crack equations
combined with the compliance relations of Chapter 2. The edge crack
SIFs needed for these relations are derived and presented in Appendix
C. All line-spring model (LSM) solutions presented in this section
are normalized with respect to the edge crack solution for the
corresponding loading and crack depth at the center of the given part-
through crack, see section C.4 of Appendix C.

4.1 Mode 1.
From Egns. 3.102,118, 2.31, and from the superposition of Fig.

2 A
&3y

crack are,

u, (t)
1 1 ©
e j(L (t-y)* 4t - 1 ) - 1e® = N5 (4.1)
2 u, (t)
(1-v7) 2 5 1

. 2: )(L (t—y)2 dt + 12(1+0) 27 IL u, (£)K(z) dt

n n

_712u1 (y) - 722“2()’) = ‘ﬁx = ‘0002/6 s (4.2)
where

z = flt-yl (4.3)
K(z) = {ii v B - 4Ky (a) v Ky(a) + 25 KZ(Z)} : (4.4)

z 2z z

85




This problem has already been solved for a Reissner plate [48].
The early line-spring model stress intensity factor solutions utilized
the classical plate bending theory which in Chapter 3 was shown to be
inadequate for through crack stress intensity factor determination.
Recall that the LSM provides stress intensity factors along the crack
front of a surface crack such that -acy<a, while the solution to a
through crack gives the SIF at y=:a. For the classical formulation,

Eqn. 4.2 is replaced with,

t

s 111_1/1 2( ) dt ~ Tygu () - Yggupty) = A, (45)
while Eqn. 4.1 étays the same. It was also shown in Chapter 3 that
for large a/h the Reissner plate bending rotation approaches that of
the classical solution except at the endpoints, see Figs. 3.4-6 and
table 3.2. Since the LSM does not use the solution at the endpoints,
it is expected that for long cracks, the classical and Reissner
theories become identical. This is shown in Figs. 4.1-4 where the LSM
for both theories is compared to the 3-D Finite element solution of
Newman and Raju, [33], see also [43]. In these figures K1t and K1b
correspond to the edge-cracked strip SIF solution for tension and
bending respectfully. For a/h smaller than about 2, which is the
realistic geometry range for part-through cracks, the transverse shear
theory shows significant improvement over the classical theory. For
larger a/h it scems that the extra expense of integrating the Fredholm
kernel, Eqn. 4.4, 1is unnecessary. Also as a/h gets larger, the

numerical solution of 4.1,2 gets more difficult. With regard to table
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3.2, it is rather surprising that the classical theory gives such good
results for a/h as small as 2. Probably the reason is that tension,
which is the same for both theories, dominates the behavior of the
solution. Otherwise the difference would be of the order of 10% for
a/h as high as 7.

In tables 4.1-10a,b the normalized SIFs along the crack front for
both rectangular (a) and semi-elliptical (b) cracks are listed for
tension and bending. The value of the normalized SIF at the center of
a semi-elliptical crack for various crack lengths and depths is given
in table 4.11 and the effect of Poisson’s ratio on this quantity is
shown in table 4.12. The only difference between this solution and
the previous solutions which wuse Reissner plate theory [48] is the
compliance functions, 1i.e. 7ij of Eqns. 4.1,2. For £<.8 the curves
used here, Eans. C.102 with coefficients listed in table C.2, are
slightly more accurate, see Eqns. (.108,109. This improved accuracy
is minimized after going through the solution process because of
normalization such that the results of tables 4.1-10 differ from those
using Eqns. C.102 by at most .002, an insignificant amount considering
the approximate nature of the model. The contribution given here is
for deep cracks, i.e. .8<£<.95. As noted in Appendix C, the
compliance curves can actually be extrapolated to £=1 because they
match the asymptotic behavior given by Benthem and Koiter [65].
Although the values in these tables for crack depths of .9 and .95 are
small, the normalization factor, which is the corresponding stress
intensity factor for the edge-cracked strip, is very large. Tables

4.13,14 list the stress intensity factors at the maximum penetration
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point of a semi-elliptical crack normalized with respect to the
solution of the edge-cracked strip for both the corresponding depth
(4.13a,14a) and for comparative purposes, with respect to a depth of
.2 (4.13b,14b). The results for tension, table 4.13, show that the
driving force, (dimensional SIF), does not simply increase with crack
depth like the solution for the edge crack. For bending, table 4.14,
the driving force is maximum for shallow cracks because of the
constraining effect of the ends which actually causes interference and

negative SIFs for deep cracks as discussed in the next section.

4.1.1 Contact Bending

The boundary conditions of the bending through crack problem
specify the crack surface loading, 32. This can only be satisfied if
tension is applied (superimposed) to open the crack to prevent
interference due to bending rotation. The crack opening displacements
due to tension and bending loads are such that contact will first
occur at the ends of the crack, therefore the condition for no contact
is satisfied if the combined stress intensity factor (tension plus
bending component) at the corner on the compressive side of the plate

is zero. The necessary ratio of tension to bending is

IHQS

k, (h
K 0/2)

> —— 4.6
N o

Q8

2
where the subscript D refers to dimensional.
There is a similar problem with bending of a part-through crack.

As can be seen from tables 4.1-10a,b, the stress intensity factors due
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to bending change sign as the crack gets deeper. Since a negative SIF
has no meaning, these solutions require a superposition of a tensile
solution to make K/KObZO. The contact curve for the through crack

case where 0, is zero in Egqn. 4.6, can be obtained from the line-

1
spring model by finding the K/K0b=0 curve. Along this curve, imagined
to be a crack front, the crack opening displacement is cusp shaped.

This solution is obtained by an iterative process where the "crack

depth" L(y)/h, is the unknown and the condition

K=1{h algl(y) + 02g2(y)] =0 , (4.7)
is used to determine it. These curves for various a/h values are
given in table 4.15. A more useful problem is to determine the

reduction in the stress intensity factor at the corner for bending
with interference, see Fig. 4.5. The line-spring model can be used to

approximate this quantity as shown in the next section.

4.1.2 Using the LSM to Calculate SIFs at the Corners

In the development of the line-spring model, the net ligament of
the part-through crack is replaced with "net ligament" stresses. In
solving the problem these stresses are determined. There is no
difference between this problem and a through crack problem with these
net ligament stresses applied as additional crack surface loads.
Therefore in the same way that SIFs are calculated for a through
crack, SIFs at the corners of a surface crack, i.e. y=*a, z=h/2 can be
calculated and with no extra work. The problem with this idea is that

close to the endpoints the net ligament stresses as provided by the
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model are not accurate and this has a significant effect on the crack
tip stress intensity factors.

As discussed in Chapter 2, section 2.3 and in Appendix C, the
crack shape controls the endpoint behavior. For example the net
ligament stresses are forced to zero at the ends of a rectangular
crack yet have a square root singularity in the case of a semi-
ellipse. In Appendix F it is shown that for the ellipse the stress
intensity factor at the corner as ‘predicted by the LSM is zero.
Numerically this could not be shown but the results indicate a
diminishing value as more terms are taken in solving the integral
equation. The only crack profile that will make the net ligament
stresses finite is the 1/4 power curve, i.e.

2)1/4

L(y)/h = § = §5(1-s (4.8)

The technique of section 2.3, presented ag#in in Eqns. 4.9,10, where
this behavior is imposed at the ends of the crack profile in order to
get well behaved net ligament stresses, did not work. The corner
stress intensity factor was too sensitive to M, the number of terms in

the series giving the crack profile:

£ = £y(1-D)™ = £,(1-57) /*h(s) (4.9)
where
2n-1/4 . 4 94
h(s) ~ (1-s°) ~ ;g%ais . (4.10)

Probably the best geometry for approximating the corner stress
intensity factor is one for which crack depth at the end is non-zero.
In this case as noted previously the net ligament stresses as
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predicted by the line-spring model go to zero at the endpoints. Since
the net ligament stresses restrict the crack from opening, the error
of the method should overestimate the correct value of the SIF. Note
that the "actual™ net ligament stresses (normalized with respect to
the stress at "infinity") are probably between zero (for deep cracks)
and one (for shallow cracks), while the normalized applied
perturbation load is negative one.

The simplest problem that satisfies this geometry condition is
the rectangular crack. The tension and bending cases are given in
Fig. 4.6 as a function of the crack depth for a/h=1. Note that as the
crack depth goes to one, the through crack value is approached in a
manner similar to the case when two collinear cracks approach each
other where behavior at the outer crack tip resembles that of one long
crack instead of two, see Figs. 3.1a-d. In Fig. 4.7 plots similar
to those of Fig. 4.6 are presented for the crack shape given in Eqn.
4.8. This figure is included only for purposes of comparison.

The contact problem of the last section also satisfies the
condition of non-zero crack depths at the ends. Results for the
"corrected" bending stress intensity factor are presented in Fig. 4.8.
This plot shows how the interference of bending reduces the stress
intensity factor from the valuc calculated when Eqn. 4.6 is assumed to
be satisfied.

This method 1is of course very approximate. From the results of
Fig. 4.6 it seems as though the tension case is wrong because the
stress intensity factor exceeds the through crack value of one. This
is due to the contribution from induced bending. It is conceivable
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that at the corner opposite the constraint, crack growth is more
likely than without the constraint although total failure of the plate
is less 1likely. In Newman’s finite element results, [33], there are
some geometries where this occurs but only by about 2% ( k(h/2)/ola
=1.023 for a/h=.4, Lo/h:.8), not the 20% that is calculated here,
although it should be noted that the semi-ellipse has a constraining
effect on the corner that the rectangle does not. I believe that the
trend is correct, however the result should be considered only
approximate.

Perhaps a method for approximating the value of the SIF at the
corner of a semi-ellipse, or for any other profile, is to use the
rectangular crack that has an equal amount of net ligament as the
shape being considered. This simply results in a shift along the Lo/h
axis of Fig. 4.6. For the semi-ellipse this shift factor which
results from equating the area of an ellipse to that of a rectangle
is:

(Ly/h)

= (n/4) (Ly/h) (4.11)

rectangle semi-ellipse
In Fig. 4.9 this shifted curve 1is presented along with some
corresponding values from Ref. [33]. These results are quite close
but for some other geometries the method does not predict such good
agreement. One would think that the model would predict an upper
bound because the material 1is redistributed away from the ends and
placed in the central portion. This should allow the crack to open

more therefore increasing the SIF. This is observed in most, but not

all cases. Especially for shorter crack lengths, say a/h¢l, does this

92




reasoning fail. For large a/h the approximation in some cases
overestimates the finite element value by as much as 50%.

Part of the problem with this method is in the interpretation of
the SIF obtained. In a plate theory the stress distribution, and
therefore, the stress intensity factor distribution, through the
thickness is assumed, see Appendix G. The value of the SIF that is
being attributed to the corner is actually the sum of the tension
component (constant through the thickness) and the bending component
(linear). To expect good results for a semi-ellipse is wishful
thinking. In fact, the elasticity solution of Benthem [1] indicates
that at a free surface, the SIF is zero for mode 1. It is interesting
to note that the values obtained from this method compare rather well
to the results by Mattheck et. al. [41] where the "corner" SIF is
averaged in order to get a general idea of the surface crack to grow
outwards. Comparison is good for all geometries given in this
reference. Perhaps the interpretation of the LSM approximation should
also be regarded as an average, especially taking into account the
results from Benthem. More work needs to be done to use the model to
investigate this problem.

Theocaris and Wu [53,54] have devised a technique which uses the
LSM and classical plate theory to obtain the SIF distribution over the
entire range, including the corner. To obtain the value at the
corner, they equate the SIF from the LSM (which 1is in a plane
perpendicular to the plate surface) to the SIF from the plate with a
through crack (which is in a plane parallel to the plate surface).

They assume the semi-elliptical crack profile has some small, non-zero
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depth at the endpoint which is measured experimentally. The
shortcoming of this method, besides assuming that there is a
displacement at the endpoint, is that the classical plate theory is
used which is inadequate to solve for through crack SIFs that involve
bending as the part-through crack problem always does. This same
technique cannot be applied to the Reissner plate because of
convergence problems. Theocaris and Wu have solved the integral

equations in closed form so this difficulty is overcome [53].

4.1.3 Double Cracks

Crack interaction introduces more of a three-dimensional nature
to the problem. For through cracks the plate theory should be
accurate for crack tip separations of the order of the plate
thickness. The justification for letting the cracks get closer
together comes from asymptotic properties of the theory that for
example are correct in terms of elasticity theory for small cracks,
i.e. a/h approaching zero. The part-through crack problem is
different. The model is inaccurate near the end, both along the crack
front, and in terms of its influence on the solid at lyl>a as shown in
the last section. Note that essentially the singular stress field
causes the interaction. The contribution from the Fredholm kernel is
secondary, especially at small separations where the problem is most
interesting.

For the semi-ellipse, the most studied geometry in the
literature, it was shown in Appendix F that a singular stress field
does not exist, although numerically this is nearly impossible to show
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because of convergence difficulties. This means that numerically
there will be a singular stress field. Therefore the crack
interaction problem for this crack shape cannot be properly solved.
In table 4.16 the tension solution to two symmetrically positioned
surface cracks is presented. The geometry of the problem is shown in
Fig. 3.8b. Results for both the semi-ellipse and the 1/4 power curve
of Eqn. 4.8 are included in this table. The difference in the
behavior of the solution for two nearly similar crack shapes, for -.98
¢{s<0, shows that the line-spring model does not predict the correct
trends. The semi-ellipse has a SIF that is nearly constant, whereas
the other curve varies considerably. For a larger separation it
should not be expected to be nearly as accurate as for a single crack.
Perhaps the SIF in the center of the crack will be reasonably
accurate. Results for a semi-elliptical crack under both tension and
bending are given in table 4.17. These results can also be found in

Ref. [59].

4.2 Modes 2 and 3

From Eqns. 3.168,179,180, 2.31, and from the superposition of
Fig. C.1, the integral equations for the skew-symmetrically loaded

part-through crack are:

b
3 a1 ja {ug()Ky5(2) + us (8)Kq (2)} dt -

- Taqu3(y) = ¥ = -85 oy (4.12)
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b u,(t) ©
;_-1 } 4 2 dt - 744“4(Y) - 745u5(Y) = ‘ny = —04 , (4.13)
a (t-y)
b u.(t) b
ra-2H5 Ezé-§ dt + [ {u (0K (2) + ug (K5 ()} at
a (t-y) a
- 754“4(}') - 755u5(Y) = “ﬁxy = —:5/6 , (4.19)
where
z=flt-yl, ay<b , (4.15)

Kyg(2) = F{-1n(a) + [Ky(2) - 55 ] + Ko@) + Inz)]} ,  (4.16)

o
5 4

Ke (2) = 1511;;7{ In(z) + [i% AL OB O i% K, (2)

K35(z) - [z + %]Kz(z) + zKo(z)} , (4.17)

Nim
w

+ 1n(z)] - [ZKO(Z) + 21n(z)] } , (4.18)
Kgq(2) = IE?%€37{ ;g R [z R %]Kz(z) - Ky(2) ) (4.19)

Again it is noted that in crack propagation studies this solution may
be used only if the crack grows in its own plane. Results for crack
lengths of a/h = .5, 1., 2., 4., and crack depths of Lo/h = .2, .4,
.6, .8, .9, .95 are given in tables 4.19-21a,b for rectangular (a) and
semi-elliptical (b) cracks for out-of-plane shear, in-plane-shear and
for twisting. Because there are two stress intensity factors (modes
2,3), normalization will be with respect to the primary value obtained
from the edge-cracked strip at the maximum depth, see section C.4 of
Appendix €. In the tables and figures this normalization factor will
be denoted by K20, K3IO, and K3TO for out-of-plane shear, in-plane
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shear, and twisting, respectively. Profiles of the SIFs for a/h=1,
v=.3 are given in Figs. 4.10-15. Note that because of the symmetry of
the problem the secondary stress intensity factor at the center of the
crack 1is zero. When the primary loading is mode 3, (twisting or in-
plane shear), out-of-plane crack growth which results from mode 2
contributions is minimized in the central portion of the crack front.
The model also shows that the secondary value 1is insignificant
throughout the range. For the rectangular crack this is expected, but
for the semi-ellipse this should not be the case. As in the mode 1
problem for which the model works well, it can only be hoped that the
inaccuracies towards the ends do not significantly affect the solution
in the center. The value of the SIF at the center of a semi-
elliptical crack is listed in table 4.22 for various crack lengths and
depths for all loading cases. The closer the value in these tables is
to one, the closer the conditions are to plane strain. For the
loading case of out-of-plane shear, plane strain conditions are more

casily met than in the mode 1 cases of tension and bending, which are

shown in Table 4.11. The opposite is true for in-plane shear and
twisting. The effect of Poisson’s ratio on the solution is shown in
table 4.23.

The method of approximating the value of the "corner" SIF of a
semi-elliptical crack wused in Sec. 4.1.2 for the mode 1 case is
applied here. The results are given in table 4.24. As discussed in
Appendix G, the work of Benthem [1] shows that at a free surface the
stress singularity for shear (modes 2 and 3) is greater than .5. The
plate theory used predicts a zero value for the mode 3 SIF at the
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surface because of the assumed parabolic shear distribution, when in
fact it should be infinite. Therefore as with the mode 1 prediction
the numbers obtained from this method should be regarded as an average

value that gives some idea of outward crack growth.
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Table 4.1a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=.5, v=.3

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

y/a

0. .784 .428 .193  .0595 .0206 .00767
.1 .783 .427 192 .0594 .0205 .00765
.2 .779 .423 .10 .0588 .0203 .00756
.3 .773 .417 187  .0579  .0199 .00741
.4 .762 .407 183  .0565 .0194 .00719
.5 .747 .393 177 .0545  .0186 .00689
.6 724 .374 169 .0519  .0176 .00648
7 .688 .348 .1568  .0484 .0162 .00593
.8 .631 .311 142  .0432 .0143 .00515
.9 .523 .253 118 .0345 .0111 .00392
.95 .417 .205 096  .0267 .0083 .00290
.98 .301 .157 071 .0182 .0055 .00190

Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95

y/a

0. .765 .339 .0620 -.0308 -.0236 -.0121
.1 .764 .338 .0614 -.0309 -.0236 -.0121
.2 .760 .333 .0594 -.0312 -.0235 -.0120
.3 .752 .326  .0561 -.0316 -.0234 -.0119
.4 .741 .314 .0513 -.0322 -.0232 -.0117
.5 .724 .298  .0447 -.0329 -.0229 -.0113
.6 .699 277 .0361 -.0337 -.0223 -.0109
7 .660 .247 .0249 -.0342 -.0214 -.0102
.8 .598 .205  .0102 -.0339 -.0196 -.0091
.9 .480 .139 -.0091 -.0308 -.0161 -.0072
.95 .366 .087 -.0201 -.0258 -.0125 -.0054
.98 .239 .038 -.0237 -.0187 -.0085 -.0036
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Table 4.1b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=.5, v=.3

Semi-elliptical crack, Tension.
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Lo/h 2 .4 .6 .8 .9 .95

.729 .390 .174 .0499  .0158 .00547
.728 .390 .174  .0500 .0159 .00546
.724 .388 .174 .0503 .0160 .00547
.717 .385 .173  .0507 .0163 .00554
.708 .381 .172  .0512  .0166 .00567
.685 .376 .16 .0515 .0170 .00583
.677 .369 .166 .0514 .0173 .00598
.654 .361 .162 .0506 .0173 .00603
.622 .351 .157 .0484  .0166 .00584
.571 .342 .152 .0452  .0151 .00525

5 .526 .340 .153 .0440 .0142 .00485

8 .474 .347 .163  .0460 .0145 .00484

Semi-elliptical crack, Bending.
LO/h .2 .4 .6 .8 .9 .95

.709 .306 .053 -.0281 -.0198 -.00960
.709 .307 .055 -.0273 -.0194 -.00934
.709 .310 .059 -.0249 -.0182 -.00867
.708 .316 .066 -.0208 -.0164 -.00776
.706 .324 .076 -.0151 -.0139 -.00667
.704 .335 .08 -.0077 -.0107 -.00539
.699 .348 .105 .0018 -.0067 -.00383
.692 .364 .124 .0132 -.0017 -.00189
.678 .385 . 147 .0269 .0044 .00054
.649 .413 .178  .0432  .0117  .00347

5 .616 .437 .202 .0542 .0162  .00519

8 .569 .467 .233 .0661 .02056 .00675
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Table 4.2a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=1, v=.3

Rectangular crack, Tension.
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Ly/h .2 4 6 .8 9 .95
.864 .561 .273 .0844 .0293 .0112
.863 .559 .273 .0841 .0292 .0112
.861 .555 .270 .0833 .0289 .0111
.857 .549 .266 .0819 .0284 .0109
.850 .538 .259 .0798 .0277 .0106
.840 .523 .251 .0769 .0266 .0101
.825 .502 .239 .0731 .0252 .0095
.800 .471 .222 .0679 .0233 .0088
.755 .425 199 .0605  .0205 .0077
.655 .347 .163 .0487 .0161 .0059
5 .541 .279 .132 .0382 .0123 .0044
8 .399 .208 .098 .0266 .0083 .0030
Rectangular crack, Bending.
Ly/h .2 4 .6 .8 .9 .95
.852 .492 .163 -.0101 -.0210 -.0128
.851 .490 .1562 -.0104 -.0210 -.0128
.848 .486 149 -.0111 -.0211 -.0128
.844 .478 .145 -.0122 -.0213 -.0128
.837 .466 .137  -.0140 -.0216 -.0128
.826 .448 127 -.0162 -.0218 -.0127
.809 .424 .114 -.0192 -.0221 -.0125
.782 .389 .096 -.0227 -.0222 -.0121
.733 .336 .071 -.0267 -.0218 -.0114
.624 .246 .033 -.0297 -.0195 -.0096
5 .500 .169 .006 -.0283 -.0161 -.0076
8 .345 .091 -.013 -.0227 -.0115 -.0052
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Table 4.2b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1 , v=.3

Semi-elliptical crack, Tension.

Lo/h .2 .4 .6 .8 9 .95

«
~
)

.817 .507 .244 .0725 .0235 .00833
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.816 .506 .244 0726 .0235 .00830
.810 .503 .243  .0727 .0236 .00825
.800 .498 .242  .0730 .0238 .00825
.786 .491 .239  .0731 .0240 .00830
.766 .481 .236  .0731 .0242 .00838
.740 .469 .231  .0725  .0243 .00842
.706 .452 .225 .0712  .0240 .00835
.657 .431 .217  .0687  .0232 .00807
.581 .401 .207 .0654 .0218 .00752
5 .513 .379 .203 .0644  .0213 .00726
8 .438 .359 .205 .0665 .0219 .00742
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.804 .441 .133 -.0114 -.0186 -.01064
.804 .441 .134 -.0102 -.0180 -.01023
.802 .444 .13 -.0068 -.0161 -.00914
.798 .449 .147 -.0012 -.0131 -.00763
.792 .455 .158  .0065 -.0093 -.00585
.783 .463 .172  .0163 -.0045 -.00382
771 .472 .189  .0280 .0010 -.00152
.752 .482 .208 .0415 .0073  .00107
.722 .492 .231 .0568 .0145 .00398
.665 .499 .259 .0747 .0225 .00719
5 .606 .500 .280 .0867 .0275 .00911
8 .b31 .496 .302 .0996 .0325 .01096
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Table 4.3a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=1, v=.0

Rectangular crack, Tension.

LO/h .2 .4 .6 .8 .9 .95
y/a
0. .838 .521 .254  .0815 .0290 .0112
.1 .837 .520 .253 .0813 .0289 .0111
.2 .835 .516 .251 .0804 .0286 .0110
.3 .831 .510 .247  .0791 .0281 .0108
.4 .824 .500 .241 .0771  .0273 .0105
.5 .814 .487 233 .0743 .0262 .0100
.6 .799 .468 222  .0705 .0247 .0094
7 .774 .440 .208 .0654 .0228 .0086
.8 .729 .398 .186  .0582 .0200 .0075
.9 .630 .326 .1563  .0467  .0156 .0057
.95 .519 .262 124 .0365 .0119 .0043
.98 .381 .197 .092  .0253 .0080 .0028

Rectangular crack, Bending.

Lo/h .2 .4 .6 .8 .9 .95
y/a
0. .824 .446 130 -.0123 -.0198 -.0118
.1 .823 .444 .12 -.0125 -.0199 -.0118
.2 .820 .440 127 -.0132 -.0200 -.0118
.3 .816 .433 .122 -.0143 -.0202 -.0118
.4 .809 .422 .116  -.0159 -.0204 -.0117
.5 .798 .406 .107  -.0180 -.0207 -.0117
.6 .781 .384 .095 -.0207 -.0210 -.0115
.7 .754 .352 079 -.0239 -.0211 -.0112
.8 .705 .303 056 -.0275 -.0207 -.0105
.9 .597 .221 .023 -.0298 -.0185 -.0089
.95 .476 .150 -.001 -.0280 -.0153 -.0070
.98 .326 .079 -.017 -.0221 -.0109 -.0048
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Table 4.3b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1 , v=.0

Semi-elliptical crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

“
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.791 .473 .228 .0699  .0232 .00829
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.790 .472 .228 .0699  .0232 .00825
.785 .470 .227  .0699  .0232 .00817
.776 .466 .225 .0699  .0233 .00813
.764 .460 .222 .0697  .0236 .00814
.747 .451 .219  .0692  .0234 .00815
.724 .441 .214 .0682  .0232 .00812
.693 .428 .208 .0663  .0227 .00797
.649 .410 .200 .0635 .0217 .00759
.578 . 387 .192  .0600 .0201 .00695
5 .515 .369 .190 .0591 .0195 .00665
8 .442 .356 .194  .0613  .0200 .00678
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.776 .401 .113  -.0129 -.0174 -.00966
.776 .402 .115 -.0119 -.0168 -.00931
774 .405 .119 -.0089 -.0152 -.00838
771 .410 .126  -.0039 -.0127 -.00710
.768 .417 .137  .0029 -.0094 -.00558
.762 .427 .150 .0116 -.0052 -.00383
.752 .438 .166  .0222 -.0003 -.00182
.737 .450 .186  .0347 .0054  .00052
.712 .465 .209  .0491 .0121  .00320
.661 .479 .239  .0665  .0197  .00625
5 .607 .486 .261 .0785  .0246  .00812
8 .535 .488 .286  .0914  .0295  .00992
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Table 4.4a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=1, v=.5

Rectangular crack, Temsion.
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Lo/h .2 .4 .6 .8 .9 .95
.891 .615 308 .0927 .0314 .0119
.890 .613 .307 .0924 .0313 .0119
.888 .609 .304 .0915 .0310 .0118
.885 .602 .300 .0899 .0305 .0116
.879 .591 .22  .0876  .0297 .0113
.870 .575 .282 .0844  .0286 .0108
.856 .552 .268 .0802 .0271 .0102
.833 .519 .249  .0744 .0251 .0094
.791 .469 .223 .0664 .0222 .0083
.695 .383 .181 .0536 .0176 .0065
5 .580 .307 .146  .0423 .0136 .0049
8 .431 .228 109 .0297 .0092 .0033
Rectangular crack, Bending.
LO/h .2 .4 .6 .8 .9 .95
.881 .554 .194 -.0024 -.0206 -.0136
.881 .553 193 -.0027 -.0207 -.0136
.879 .548 189 -.0035 -.0208 -.0136
.874 .540 .184 -.0049 -.0210 -.0136
.868 .527 175 -.0070 -.0214 -.0136
.858 .508 .164 -.0097 -.0219 -.0135
.843 .482 .148 -.0133 -.0223 -.0134
.819 .444 127 -.0177 -.0226 -.0131
.773 .387 .098 -.0229 -.0225 -.0123
.667 .288 063 -.0279 -.0206 -.0105
5 .542 .201 .020 -.0280 -.0173 -.0084
8 .380 .113  -.006 -.0234 -.0126 -.0058
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Table 4.4b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1 , v=.5

Semi-elliptical crack, Tension.

Ly/h -2 4 .6 .8 9 .95

¢
~
)

.848 .554 .273 .0789  .0254 .00895
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.845 .553 .273  .0799 .0255 .00892
.839 .549 .272 .0802 .0256 .00888
.828 .543 .270  .0807 .0259 .00891
.811 .534 .268 .0811 .0263 .00900
.789 .522 .264 .0814 .0266 .00912
.759 .506 .259  .0812 .0269 .00924
.720 .485 .251 .0801  .0268 .00924
.666 .457 .241 .0778  .0262 .00904
.582 .417 .227 .0742 .0249 .00855
5 .509 .387 .219  .0727  .0242 .00830
8 .429 .358 .217  .0741  .0248 .00846
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.837 .496 .167 -.0052 -.0188 -.01147
.836 .496 .169 -.0039 -.0180 -.01097
.833 .499 .174  .0001 -.0157 -.00964
.828 .502 .182 .0066 -.0122 -.00782
.820 .507 .193 .0154 -.0076 -.00567
.809 .512 .208 .0263 -.0022 -.00326
.793 .518 .225 .0392 .0041 -.00061
.769 .523 .244 .0538 .0112  .00231
.733 .527 .265 .0699 .0188  .00545
.667 .523 .289  .0880 .0271  .00881
5 .602 .513 .305 .0996  .0322  .01078
8 .521 .497 .322 .1119 .0372  .01266

OO0 DU WN
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Table 4.5a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=1.5, v=.3

Rectangular crack, Tension.

e e . O
Awl\?'—"?

e e s . Ow

LO/h 2 .4 .6 .8 .9 .95
.899 .639 .333  .1037  .0357 .0137
.898 .638 .332 .1034 .0355 .0136
.897 .634 .329 .1024 .0352 .0135
.893 .627 .324 1006 .0346 .0132
.888 .616 .317  .0981  .0337 .0129
.880 .601 307 .0946 .0324 .0124
.868 .580 .292  .0898 .0307 .0117
.849 .549 272 .0832 .0283 .0107
.813 .500 .244 .0739 .0250 .0094
L1727 .413 .198  .0592  .0196 .0073
5 .617 .332 .189  .0465 .0151 .0055
8 .465 .246 118  .0327  .0103 .0037
Rectangular crack, Bending.
Ly/h .2 4 8 .8 .9 .95
.890 .582 .222 .0084 -.0173 -.0126
.889 .581 221 .0081 -.0174 -.0126
.887 .576 .218  .0072 -.0176 -.0126
.884 .568 212 .0056 -.0179 -.0127
.878 .556 .203  .0032 -.0184 -.0127
.870 .539 .192  .0000 -.0191 -.0128
.857 .514 175 -.0042 -.0199 -.0128
.836 .478 1563 -.0098 -.0207 -.0127
.797 .422 121 -.0169 -.0214 -.0123
.702 .322 071 -.0251 -.0208 -.0109
5 .582 .230 .032 -.0276 -.0182 -.0090
8 .417 .133 -.000 -.0245 -.0136 -.0064
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Table 4.5b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1.5 , v=.3

Semi-elliptical crack, Tension.
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Lo/h .2 .4 .6 .8 .9 .95
.858 .577 .295 .0895 .0291 .0104
.856 .576 .294 .0895 .0291 .0103
.849 .571 .293 .0897 .0292 .0102
.837 .564 .291 .0899 .0294 .0102
.820 .554 .287 .0900 .0296 .0102
.797 .5b41 .282 .0898 .0298 .0103
.767 .523 .276  .0830 .0298 .0103
.726 .500 .267 .0873 .0295 .0102
.670 .469 .254 .0844  .0286 .0099
.582 .424 .238 .0801 .0271 .0094
5 .506 .389 .227  .0781 .0264 .0091
8 .422 .352 .221 .0786  .0268 .0092
Semi-elliptical crack, Bending.
Ly/h .2 4 .6 8 .9 .95
.848 .521 .191  .0040 -.0162 -.01078
. 847 .522 .193 .0054 -.0153 -.01025
.844 .524 .198 .0095 -.0129 -.00884
.838 .527 .206 .0161 -.0092 -.00680
.830 .531 .217- .0251 -.0044 -.00463
.818 .535 .231 .0362 .0013 -.00211
.801 .540 . 247 .0491 .0077 .00063
.776 .543 .265 .0636 .0148  .00358
.738 .544 .285 .0795 .0224 .00673
.669 .535 .307 .0974 .0307 .01009
5 . 600 .519 .320 .1087 .0358 .01207
8 .513 .493 .331 .1200 .0407 .01394
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Table 4.6a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=2 , v=.3

Rectangular crack, Tension.

Lo/h 2 .4 .6 .8 .9 .95
y/a
0. .920 .693 .382 .120 .0408 .0155
.1 .920 .692 .381 .120  .0407 .0155
.2 .918 .688 .378 .119  .0403 .0153
.3 .915 .681 .373 .117  .0396 .0151
.4 .910 .671 .364 .114  .0386 .0147
.5 .903 .656 .353 110 .0372 .0141
.6 .893 .635 .337 .104  .0353 .0134
7 .877 .604 .314 .097 .0326 .0123
.8 .847 .555 .282 .086  .0287 .0108
.9 772 .464 .228 .068 .0225 .0083
.95 .669 .375 .182 .053 .0173 .0063
.98 .515 .277 134 .038 .0118 .0042

Rectangular crack, Bending.

Lo/h .2 .4 .6 .8 .9 .95
y/a
0. .913 .645 279 .0254 -.0136 -.0121
1 .912 .644 .278  .0250 -.0137 -.0121
.2 .910 .639 .274  .0239 -.0140 -.0121
.3 .807 .631 .267  .0220 -.0144 -.0122
.4 .902 . .619 .2568 .0192 -.0151 -.0123
.5 .895 .602 .245  .0152 -.0159 -.0124
.6 .884 .577 .226 .0100 -.0171 -.0126
7 .866 .542 .201 .0029 -.0185 -.0127
.8 .834 .485 .164 -.0066 -.0202 -.0126
.9 .752 .380 105 -.0193 -.0210 -.0117
.95 .640 .279 056 -.0254 -.0194 -.0100
.98 .472 .168 .013 -.0252 -.0151 -.0073
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Table 4.6b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=2 , v=.3

Semi-elliptical crack, Tension.

Ly/h .2 .4 .6 .8 9 .95
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.883 .627 .336 .104 .0336 .0120
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.880 .625 .335 .104 .0337 .0119
.873 .620 .333 .104 .0338 .0118
.860 .611 .330 .104 .0340 .0118
.841 .598 .326 .104 .0343 .0118
.815 .581 .319 .104 .0346 .0119
.781 .558 .310 .103  .0346 .0119
.737 .530 .298 .101  .0342 .0119
.676 .491 .281 .097 .0332 .0115
.582 .435 .258 .091 .0314 .0109
5 .501 .390 .241 .088 .0304 .0105
8 .413 .344 .227 .086 .0303 .0105
Semi-elliptical crack, Bending.
LO/h .2 .4 .6 .8 .9 .95
.875 .578 .239 .0180 -.0135 -.01066
.874 .579 .241 .0196 -.0125 -.01002
.870 .580 .245  .0242 -.0097 -.00834
.863 .581 .253 .0316 -.0054 -.00604
.852 .582  .264 .0416 .0001 -.00338
.838 .584 .277 .0536  .0066 -.00481
.818 .584 .291 .0672 .0136 .00259
.789 .582 .307 .0822 .0212 .00580
.746 .575 .323 .0981 .0291 .00911
.8670 .553 .338  .115 .0374  .0125
5 .585 .525 .343  .125 .0422  .0144
8 .503 .485 .344 .133 .0465 .0162
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Table 4.7a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=3 , v=.3

Rectangular crack, Tension.

el D O
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Lo/h 2 .4 .6 .8 .9 .95
.944 .766 .461 150  .0495 .0184
.944 .765 .460 .149  .0493 .0183
.942 .761 .456 .148  .0489 .0182
.940 .754 .449 .146  .0481 .0179
.936 .743 .430 .142  .0470 .0175
.930 .729 .426 .137  .0453 .0169
.922 .708 .407 .130 .0431 .0160
.909 .678 .382 121 .0399 .0148
.886 .630 .343 .107  .0351 .0130
.827 .537 .279 .085 .0274 .0100
5 .738 .440 222 .066 .0209 .0075
8 .588 .327 .162 .046  .0142 .0051
Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.939 .729 .370  .0565 -.0065 -.0108
.939 .727 .369  .0560 -.0066 -.0108
.937 .723 .365  .0545 -.0069 -.0109
.934 .715 .357  .0520 -.0075 -.0110
.930 .703 .346  .0484 -.0084 -.0111
.924 .686 .330 .0433 -.0096 -.0114
.915 .662 .308 .0364 -.0112 -.0117
.901 .627 279 .0270 -.0135 -.0121
.875 .572 235 .0138 -.0165 -.0125
.811 .465 .162 -.0060 -.0199 -.0125
5 .715 .354 .099 -.0188 -.0203 -.0113
8 .551 .224 .038 -.0245 -.0172 -.0087
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Table 4.7b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=3 , v=.3

Semi-elliptical crack, Tension.
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Lo/h .2 .4 .6 .8 .9 .95
.913 .695 .400 .128 .0411 .0144
.910 .693 .399 .128  .0412 .0144
.901 .685 .396 .128  .0415 .0143
.886 .673 .392 .129  .0419 .0144
.865 .656 .384 .130 .0424 .0145
.836 .633 .374 .128  .0428 .0147
.798 .603 .360 .127  .0429 .0148
.749 .565 .341 .123  .0424 .0147
.682 .515 .316 .117  .0410 .0143
.581 .444 .281 .108 .0383 .0134
5 .495 .387 .254 .101  .0362 .0127
8 .402 .330 .228 .095 .0348 .0123
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.907 .657 .315 .0434 -.0081 -.01004
.905 .857 .316  .0452 -.0069 -.00924
.900 .656 .320 .0506 -.0034 -.00713
.891 .654 .327 .0591 .0019 -.00424
.879 .651 .226 .0703 .0086 -.00095
.861 .647 .346 .0834 .0161 .00254
.837 .639 .357 .0977 .0241  .00611
.803 .628 .367  .113 .0323  .00966
.754 .608 .374 .127 .0403 .0131
.670 .569 .375 .140 .0479 .0164
5 .589 .527 .367  .146 .0516  .0179
8 .492 .470 .351 .149 .0542 .0192
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Table 4.8a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=4 , v=.3

Rectangular crack, Tension.
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Lo/h .2 .4 .6 .8 .9 .95
.957 .812 .523 .176  .0571 .0207
.957 .811 .521 .176  .0569 .0206
.956 .807 .517 .174  .0564 .0205
.954 .800 .510 .171  .0555 .0202
.950 .790 .499 .167  .0542 .0197
.946 .776 .484 .161  .0524 .0191
.938 .756 .463 .153  .0499 .0182
.927 .726 434 .142  .0463 .0169
.907 .680 .392 .126  .0408 .0149
.858 .588 .321 .099 .0318 .0114
5 .782 .489 .255 .076  .0240 .0085
8 .639 .366 .185 .063 .0162 .0057
Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.954 .782 .442 0852  .00057 -.0093
.953 .781 .440  .0846  .00043 -.0093
.952 .776 .435 .0828 -.00001 -.0094
.950 .769 427  .0797 -.00077 -.0096
.946 .757 .414 .0752 -.00188 -.0098
.941 .741 .397 .0690 -.00340 -.0101
.933 .717 .373  .0607 -.00545 -.0106
.920 .683 .340 .0493 -.00825 -.0111
.899 .629 201  .0332 -.0122 -.0119
.846 .524 .209 .0078 -.0177 -.0126
5 .762 .410 136 -.0107 -.0201 -.0121
8 .607 .268 062 -.0223 -.0185 -.0098
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Table 4.8b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=4 , v=.3

Semi-elliptical crack, Tension.

Ly/h .2 4 .6 .8 9 .95

«
~
Y

€D D00~ U A W

.930 .741 .450 .149  .0475 .0165
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.927 .738 .449 .149  .0477 .0164
.918 .729 .445 .150 .0481 .0164
.901 .715 .439 .150  .0487 .0165
.878 .693 .429 .150  .0494 .0168
.847 .665 .415 .149  .0500 .0171
.807 .630 .396 .146  .0502 .0173
.755 .584 .371 .141  .0495 .0172
.685 .526 .338 .133  .0474 .0166
.579 .445 .292 .119  .0434 .0154

5 .491 .382 .258 .109  .0402 .0143

8 .397 .319 .224 .099 .0375 .0135

Semi-elliptical crack, Bending.
LO/h .2 .4 .6 .8 .9 .95

.926 .710 .374 .0663 -.0027 -.00918
.924 .709 .375 .0683 -.0013 -.00824
.918 .707 .379  .0742  .0027 -.00577
.908 .702 .384 .0834 .0088 -.00241
.894 .696 .390 .0952 .0163 .00137
.874 .687 .397 .109 .0247 .00531
.847 .673 .403 .123 .0333 .00924
.810 .654 .407 .137 .0417 .0130
.758 .626 .406  .149 .0494 .0164
.669 .575 .395  .158 .0557  .0193

5 .585 .523 .377 .159 .0580 .0205

8 .486 .459 .350 .157 .0588 .0211
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Table 4.9a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=6 , v=.3

Rectangular crack, Tension.

Ly/h .2 4 .6 .8 9 .95
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.971 .866 .613 .224 .0710 .0246
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.971 .865 .612 .223  .0708 .0246
.970 .862 .607 .221  .0702 .0244
.969 .856 .599 .217  .0690 .0240
.966 .848 .586 .212  .0674 .0235
.962 .835 .569 .204  .0651 .0228
.957 .816 .546 .194  .0619 .0218
.948 .789 .514 .180  .0575 .0203
.931 744 .466 .160 .0511 .0181
.893 .657 .385 .126  .0398 .0140
5 .834 .558 .309 .096  .0267 .0103
8 .709 .425 224 .066 .0196 .0067
Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.969 .845 .548 .137  .0143 -.00622
.968 .844 .546 .137  .0141 -.00626
.968 .840 .540 .134  .0135 -.00641
.966 .834 .531 .130  .0124 -.00665
.963 .823 .516 .124  .0108 -.00700
.959 .809 .497 .116  .0087 -.00748
.953 .787 .469 .104  .0058 -.00812
.943 .755 .432 .090 .0020 -.00899
.925 .704 .377 .069 --.0035 -.0102
.884 .603 .284 .036 -.0121 -.0120
5 .819 .489 .196 .007 -.0179 -.0126
8 .683 .336 102 -.015 -.0196 -.0112
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Table 4.9b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=6 , v=.3

Semi-elliptical crack, Tension.
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LO/h .2 .4 .6 .8 .9 .95
.950 .800 .526 .186  .0588 .0199
.947 .796 .524 .186  .0590 .0199
.936 .785 .518 .186  .0597 .0200
.919 .766 .508 .186  .0607 .0203
.893 .740 .493 .186  .0619 .0209
.860 .705 472 .183  .0627 .0214
.817 .661 .444 .178  .0627 .0217
.761 .606 .408 .169  .0613 .0215
.687 .537 .362 .155  .0576 .0205
.577 .443 .300 .133  .0507 .0183
5 .486 .373 .256 .117  .0452 .0164
8 .390 .304 .215 .102  .0402 .0148
Semi-elliptical crack, Bending.
LO/h .2 .4 .6 .8 .9 .95
.947 777 .463 .107  .0078 -.00713
.945 .775 .463 .109  .0095 -.00597
.938 .771 .465 .115 .0144 -.00292
.927 .763 .467 .125  .0217  .00188
.911 .751 .467 .138  .0305 .00574
.888 .735 .469 .151  .0400 .0104
.858 .713 .468 .164  .0491 .0148
.818 .683 .459 .175  .0573  .0187
.761 .642 .443 .181  .0636  .0218
.667 .576 .412 .180  .0667  .0237
5 .580 .5156 .381 .173 .0661 .0239
8 .478 .442 .341 .163 .0636 .0233
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Table 4.10a,b Normalized stress intensity factors
for a rectangular

surface crack in a plate under tension or bending
loads, a/h=10 , v=.3

Rectangular crack, Tension.

Ly/h .2 4 6
y/a
0. .983 .917 .723
.1 .983 .916 721
.2 .982 .914 117
.3 .981 .910 .708
.4 .980 .903 .695
.5 .977 .893 677
.6 .973 .880 .652
7 .967 .855 .617
.8 .955 .815 .564
.9 .926 .735 .472
.95 .883 .642 .385
.98 .788 .506 .281
Rectangular crack,
Lo/h .2 .4 .6
y/a
0. .981 .904 .676
.1 .981 .903 .674
.2 .980 .901 .668
.3 .979 .895 .659
.4 .978 .888 .644
.5 .975 .876 .623
.6 .971 .859 .593
7 .964 .832 .552
.8 .951 .786 .490
.9 .919 .694 .384
.95 .873 .586 .283
.98 .769 .429 .166

117

.8

.305
.304
.300
.295
. 287

aTe
c Ll U

.262
.242
.215
171
.131
.088

Bending.

.8

.226
.225
.222
.216
.207
.195
.179
.158
.129
.082
.041
.002

.0966
.0963
.0953
.0937
.0912

ne70
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.0834
0774
.0688
.0541
.0403
.0257

.0406
.0403
.0393
.0376
.0351
.0317
.0273
.0214
.0133
.0003
-.0106
-.0186

(a), or semi-elliptical (b),

.95

.0315
.0314
.0312
.0307
.0300

001

VLT A

.0278
.0260
.0233
.0183
.0134
.0083

.95

.00012
.00000

-.00020
-.00061
-.00120
-.00201
-.00306
-.00447
-.00641
-.00954
-.0120

-.0126



Table 4.10b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=10 , v=.3

Semi-elliptical crack, Tension.
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Lo/h 2 .4 .6 .8 .9 .95
.968 .862 .624 .245  .0780 .0255
.965 .857 .621 .245 .0784 .0256
.953 .843 .611 .244  .0796 .0261
.935 .819 .595 .244  .0813 .0269
.907 .786 .571 .241  .0830 .0279
.871 .743 .538 .235 .0839 .0288
.825 .689 .497 .224 .0830 .0292
.766 .623 .445 .207  .0793 .0285
.688 .542 .381 .181  .0716 .0262
.574 .436 .300 .145 .0587 .0218
5 .481 .360 .246 .120  .0493 .0185
8 .383 .287 .197 .098 .0410 .0155
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.966 .848 .576 .173  .0274 -.00266
.964 .844 .576 .178 .0286 -.00116
.957 .837 .574 .182  .0357  .00275
.944 .824 .570 .192 .0445 .00797
.926 .806 .564 .204  .0549  .0136
.901 .781 .553 .215 .0653 .0191
.868 .749 .537 .223 .0745 .0240
.824 .708 .512 .225 .0810 .0277
.763 .653 .475 .219  .0832  .0296
.664 .572 .419 .200 .0792 .0290
5 .575 .502 .373 .182 .0733 .0272
8 .471 .422 .322 .161 .0661 .0248
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Table 4.11 Normalized stress intensity factor at
the center of a semi-elliptical crack subjected to
tension and bending, v=.3

Tension
a/h .5 1. 1.5 2. 3. 4. 5. 6. 8. 10.

Ly/h

.1 .910 .945 .959 .967 .976 .981 .984 .987 .990 .992
.2 .729 .817 .858 .883 .913 .930 .942 .950 .961 .968
.3 .545 .662 .724 .765 .817 .850 .873 .889 .912 .927
-4 .390 .507 .577 .627 .695 .741 .774 .800 .837 .862
.5 .268 .365 .430 .479 .552 .605 .646 .679 .728 .763
6 .174 .244 295 .336 .400 .450 .491 .526 .581 .624
27,102 146 .179 .207 .253 .291 .324 .353 .402 .443
& .05 .073 .089 .104 .128 .145 .168 .186 .217 .245
-85 .031 .045 .055 .064 .079 .092 .104 .115 .135 .153
.9 .012 .024 .029 .034 .041 .048 .053 .059 .069 .078
.95 .005 .008 .010 .012 .014 .016 .018 .020 .023 .025
Bending
a/h .5 1 1.5 2. 3. 4. 5. 6. 8. 10.
Lo/h

.1 .907 .943 .957 .966 .975 .981 .984 .986 .990 .992
.2 .709 .804 .848 .875 .907 .926 .938 .947 .959 .966
.3 .495 .626 .696 .741 .799 .836 .861 .879 .904 .921
-4 .306 .441 .521 .578 .657 .710 .748 .777 .818 .846
-5 L1587 271 .346 .404 .490 .552 .599 .637 .693 .734
.6 .053 .133 .191 .239 .315 .374 .422 .463 .527 .576
.7 -.007 .038 .074 .105 .157 .201 .240 .273 .331 .378
.8 -.028 -.011 .004 .018 .043 .066 .087 .107 .142 .173
-85 -.027 -.020 -.012 -.005 .009 .022 .035 .046 .068 .0O88
.9 -.020 -.019 -.016 -.014 -.008 -.003 .003 .078 .018 .027
.95 -.005 -.011 -.011 -.011 -.010 -.009 -.008 -.007 -.005 -.003
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Table 4.12 The effect of Poisson’s ratio on the
normalized stress intensity factor at the center
of a semi-elliptical crack subjected to tension
and bending, a/h=1.

Tension Bending

v O. .3 .5 0. .3 .5
Lo/h
.1 .935 .945 .956 .933 .943 .954
.2 .791 .817 .848 .776 .804 .837
.3 .628 .662 .707 .587 .626 .676
.4 .473 .507 .554 .401 .441 .496
.5 .339 .365 .406 .239 .271 .319
.6 .228 .244 273 .113  .133 .167
.7 .138 .146 .163 .029 .038 .056
.8 .070 .073 .080 -.013 -.011 -.005
.85 .044 .045 .049 -.019 -.020 -.017
.9 .023 .024 .025 -.017 -.019 -.019
.95 .008 .008 .009 -.010 -.011 -.011
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Table 4.13a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack
subjected to tension. In 13a the normalization
factor is for the corresponding depth edge crack
given by Lo/h. The data in 13b is normalized with

respect to a crack depth of .2 for all LO/h’ v=.3
LO/h .2 .4 .6 .8 .9 .85

729 .390  .174  .0499 .0158 .00547
.817  .507  .244 0725 .0235 .00833
.858 577 .295 .0895 .0291 .0104
.883  .627 .336 .104 .0336 .0120
.913  .895 400 .128 .0411 .0144
.930  .741 .450  .149 .0475 .0165
.942 774  .491  .168 .0534 .0182
.850 .800 .526 .186 .0588 .0199
.961 .837  .581 .217 .0688 .0228
.68  .862 .624 .245 .0780  .0255

Table 4.13b

Lo/h .2 .4 .6 .8 .9 .95
.729 .852 .80 .873 .849 .864
.817 1.107 1.248 1.268 1.263 1.317
.858 1.261 1.506 1.564 1.563 1.638
.883 1.368 1.714 1.814 1.806 1.889
.913 1.518 2.044 2.240 2.209 2.283
.930 1.618 2.301 2.608 2.554 2.603
.942 1.691 2.511 2.941 2.867 2.884
.950 1.747 2.687 3.245 3.158 3.139
.961 1.827 2.969 3.792 3.695 3.603
.068 1.882 3.186 4.276 4.190 4.025
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Table 4.14a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack
subjected to bending. In 14a the normalization
factor is for the corresponding depth edge crack
given by Lo/h. The data in 14b is normalized with

respect to a crack depth of .2 for all Lo/h, v=.3

LO/h .2 .4 .6 .8 .9 .95
.709 .306 .0532 -.0281 -.0198 -.00960
.804 .441 .133 -.0114 -.0186 -.0106
.848 .521 .191 -.0400 -.0162 -.0108
.875 .578 .239 -.0180 -.0135 -.0107
.907 .857 .315 .0434 -.00813 -.0100
.926 .710 .374 .0663 -.00273 -.00918
.938 .748 .422 .0873 .00258 -.00819
.947 777 .463 .107 .00779 -.00713
.959 .818 .527 .142 .0178 -.00492
.966 .846 .576 .173 .0274 -.00266

Table 4.14b

Lo/h .2 .4 .6 .8 .9 .95

.709  .516 167 -.249 -.496 -.680
.804 .774  .417 -.101 -.466 -.754
.848  .881 .601 -.0355 -.405 -.764
.875  .836 .751 -.190 -.339 -.755

o

.907 1.110  .989 .385 -.204 -.712
.926 1.199 1.175 .588 -.0685 -.650
.938 1.263 1.326 .774  .0647 -.580
.947 1.312 1.453 .947 .195 -.505
.959 1.382 1.655 1.259 .447 -.348
.966 1.430 1.810 1.536 .687 -.188
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Table

bending without addition of tensile

prevent interference as approximated by the line-

4.15

Contact

spring model, v=.3

a/h .5

.680
.689
.687
.683
.678

.51 .669

CONDUT R WN-=O

.659
.645
.622
.584

1.0

774
774
772
.768
.763
.754
.744
.729
.706
.665

1.5

.818
.818
.816
.813
.808
.800
.791
.776
.753
712

2.0

.846
.846
.844
.841
.837
.830
.822
. 808
.786
.745

curve

3.0

.881
.880
.879
.877
.873
.868
.861
.849
.829
.790
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for through

4.0

.902
.901
.900
.898
.895
.891
.885
.875
.857
.821

5.0

.916
.916
.915
.913
911
.906
.901
.892
.877
.844

crack
field to

6.0

.927
.926
.925
.924
.922
.918
.913
.905
. 892
.861

8.0 10.0
.941 .950
.941 .950
.940 .950
.939 .949
.937  .947
.934 .944
.930 .941
.924 .936
.912  .926
.886 .903



!

1

.98
.95
.90
.80
.70
.60
.51
.40
.30
.20
.10

.10
.20
.30
.40
.51
.60
.70
.80
.90
.95
.98

Table 4.16 Normalized stress intensity factors
are listed at positions along the crack front of
two collinear, symmetric part-through cracks
subjected to tension such that *b defines the inner
crack tip and #c refers to the outer tip. Two
different crack shapes are used for four different
values of the separation distance, b. results are
given for the crack from b to c.

v=.3, (c-b)/(2h)=a/h, s=2/(c-b) [y-(c+b)/2]
g6, (1592 g=t,(1-s7) 1/
b=.1 b=.5 b=1. biw b=.1 b=.5 b=1l. b+»

.279  .230 .218 .205 .186 .1563 .145 .138
.266 .224 .213 .203 .212  .178 .170 .163
.262  .226 .216 .207 .234 .200 .192 .185

.262 .233 .225 .217 .256  .225 .217 .210
.264 .240 .232 .225 .266 .240 .232 .225
.265 .244 .238 .231 .273  .250 .242 .236
.265 .248 .242 .236 .278 .256 .249 .243
.266 .250 .245 .239 .281 .262 .256 .249

.265 .252 .247 .242 .283 .266 .260 .253
.265 .253 .248 .243 .284 .268 .262 .256
.264 .253 .249 .244 .284 .269 .264 .258
.263 .253 .249 .244 .283 .269 .264 .258
.262  .252 .248 .244 .281 .268 .263 .258
.261 .251 .248 .243 .278 266 .262 .256
.259 .250 .246 .242 .274 .263 .259 .253
.256  .247 .244 .239 .269 .259 .254 .249
.252  .244 .240 .236 .262 .252 .248 .243

.248 .239 .236 .231 .254 .244 .240 .236
.241  .233 .230 .225 .242 233 .230 .225
.233  .225 .221 .217 .226  .217 .214 .210
.224  .216  .212 .207 .199 .192 .189 .185
.221 .212 .209 .203 176  .170 .167 .163
.226  .217 .213 .205 .151 .145 .142 .138

124




Table 4.17 The normalized stress intensity
factor at the maximum penetration point of two
interacting semi-elliptical surface cracks for
both tension and bending loads, v=.3

b2y 1 e by-2g de ab 1o 5 A - s O bz*az]
2h ~ ST T2n T %Py T AE T B
PLATE TENSION
d/a 0.1 0.25 0.5 1 2 o
c/a
1 397  .392 .38  .379  .374  .366
K (o) 0.5 .382  .378  .375  .371 .368  .366
¥ 0.25  .373  .371  .369  .368  .366  .366
t0 0.1 .367  .367  .366  .366  .366  .366
1 .397  .392  .386  .379  .374  .366
K (B) 0.5 .300  .293  .286  .279  .274  .269
¥ 0.25  .217  .209  .203  .198  .194  .190
t0 0.1 .136  .130  .126  .124  .124  .123
PLATE BENDING
1 313 306  .299  .290  .283  .272
K, (A) 0.5 292  .287  .282  .278  .274  .272
% 0.25  .280  .275  .275  .273  .272  .272
b0 0.1 273 273 .272 272 272  .272
1 313 .301  .299  .290  .283  .272
K, (B) 0.5 197 (188  .179  .171 164 .272
7 0.25 .101  .091 .083  .076  .072  .069
b0 0.1 .012  .0045 -.0004 -.0038 -.0057 -.0058
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Table 4.18a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=.5 , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

Ly/h .2 .4 .6 .8 .9 .95
y/a
0. .998 .960 .810 568  .429  .344
1 .997 .959 .807 566  .427  .342
.2 .997 .956 .799 557  .420  .336
.3 .997 .950 .786 544  .408  .327
.4 .996 .942 .766 524  .392  .313
.5 .995 .928 .738 .497  .370  .295
.6 .994 .909 .699 461 .341  .271
7 .991 .877 .645 415 .304  .241
.8 .985 .823 .566 352  .256  .201
.9 .968 .706 .438 260  .186  .146
.95 .932 .575 .328 189 .134  .104
.98 .858 .409 .217 122 .086  .066

Mode 3, K3/K20(x100)

Ly/h .2 .4 .6 .8 .9 .95
y/a
0. .000 .000 .000 .000 .000 .000
1 .026 .057  -.027  -.204  -.234 ~.209
.2 .051 112 -.056  -.404  -.463 -.413
.3 .076 163  -.089  -.598  -.680 -.605
.4 .099 207 -.127  -.780  -.879 -.779
.5 .120 .241  -.173  -.946 -1.05 -.926
.6 .138 261  -.229 -1.09 -1.18 -1.04
7 .149 261 -.296 -1.19  -1.26 ~1.09
.8 151 .230 -.378 -1.23  -1.26 ~1.08
.9 132 .146  -.465 -1.13  -1.09 ~.914
.95 .104 063  -.483  -.941  -.869 -.714
.98 067  -.022  -.426  -.673  -.597 -.484

126



Table 4.18a continued, Normalized stress intensity
factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=.5 , v=.3

Rectangular crack, In-plane shear

Mode 3, K3/K3I0

-
~
o

«
~
)

DO OO0 OU i W

Lo/h .2 .4 .6 .8 .9 .95
.780 .584 .513 .420 .316 .240
.779 .582 .512 .418 .314 .239
.776 .578 .508 .414 .311 .236
.769 .571 .502 .408 .305 .231
.760 .560 .492 .397 .296 .224
.746 .545 .478 .383 .283 .213
.725 .524 .460 .364 .266 .199
.692 .495 .434 .337 .243 .181
.638 .451 .396 .299 .211 .155
.534 .379 .333 .235 .161 .116
5 .430 .316 .272 .179 .119 .085
8 .321 .251 .199 .121 .078 .0585
Mode 2, K2/K3I0(X100)
Lo/h .2 .4 6 .8 .9 .95
.000 .000 .000 .000 .000 .000
-.091 -.279 -.274 -.135 -.067 -.038
-.181 -.553 -.540 -.265 -.132 -.075
-.269 -.816 -.788 -.384 -.191 -.108
-.354 -1.06 -1.01 -.487  -.241 -.136
-.435 -1.28 -1.19 -.568 -.280 -.158
-.510 -1.46 -1.32 -.619 -.304 -.171
-.576 -1.58 -1.38 -.633 -.308 -.173
-.629 -1.62 -1.33 -.594  -.287 -.160
-.657 -1.47 -1.10 -.475 -.227 -.126
5 -.644 -1.22 -.847 -.355 -.169 -.093
8 -.596 -.879 -.567 -.233 -.110 -.061
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Table 4.18a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=.5, v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

Ly/h .2 4 6 8 .9

y/a

0. .754 .443 .124 -.723 -2.61
.1 .753 .441 .122 -.725 -2.61
.2 .749 .436 L1156 -.730 -2.61
.3 .743 .426 .105 -.740 -2.61
.4 .732 .412 .089 -.752 -2.60
.5 .716 .392 .068 -.767 -2.58
.6 .693 .364 .040 -.782 -2.53
7 .656 .326 .002 -.791 -2.45
.8 .596 .268 -.046 -.782 -2.28
.9 .480 .176 -.109 -.709 -1.90
.95 .366 .100 -.138 -.592 -1.50
.98 .235 .027 -.136 -.426 -1.03

Mode 2, K2/K3TO
Ly/h -2 4 .8 8 .9

y/a

0. .00000 . 00000 .0000 .0000 .0000
.1 -.00101 -.00381 -.0058 -.0096 -.0217
.2 -.00202 -.00755 -.0114 -.0189 -.0425
.3 -.00301 -.0111 -.0167 -.0275 -.0618
.4 -.003986 -.0145 -.0214 -.0350 -.0785
.5 -.00487 -.0175 -.0253 -.0410 -.0916
.6 -.00571 -.0199 -.0281 -.0450 -.1001
i -.00644 -.0217 -.0294 -.0463 -.1024
.8 -.00703 -.0222 -.0284 -.0438 -.0962
.9 -.00734 -.0202 -.0236 -.0352 -.0767
.95 -.00720 -.0168 -.0182 -.0265 -.0523
.98 -.00666 -.0121 -.0122 -.0174 -.0374

128

.95

.45
.44
.41
.37
.29
.16
.95
.62
.03
.89
.76
.54

.95

.000

.057
.111
.162
.205
.239
.261
.266
. 249
.198
.147
.096




Table 4.18b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=.5 , v=.3

Semi-elliptical crack, Out-of-plane shear

¥ode 2, K2/K20

Lo/h .2 .4 .6 .8 .9 .95
y/a
0. .988 .883 .685 .467 .350 .277
.1 .982 .880 .684 .466 .348 .273
.2 .963 .871 .683 .465 .343 .262
.3 .931 .855 .680 .464 .337 .251
.4 .884 .830 .675 .464 .332 .242
.5 .821 .795 .68 .465 .330 .237
.6 .740 .745 .657 .469 .332 .236
7 .636 .672 .637 .476 .340 .241
.8 .501 .564 .596 .485 .355 .254
.9 .319 .387 .487 .478 .374 .275
.95 .198 .249 .354 .423 .362 .277
.98 .103 .132 .200 .295 .288 .234

Mode 3, K3/K20(x100)

Ly/h .2 4 6 .8 .9 .95
y/a
0. .000 .000 .000 .000 .000 .000
.1 .024 .171 -.027 -.143 -.155 -.133
.2 .048 .336 -.049 -.274 -.300 -.256
.3 .070 .489 ~-.044 -.379 -.426 -.363
.4 .090 .623 ~-.015 -.443 -.520 -.447
.5 .108 .736 .048 -.449 -.568 -.499
.6 .123 .825 .151 -.376 -.546 -.500
7 .134 .891 .295 ~.203 -.423 -.420
.8 .141 .943 .482 .086 -.160 -.220
.9 .142 1.01 .722 .496 .262 .134
.95 .139 1.12 .898 .767 .540 .371
.98 .132 1.30 1.07 1.01 .765 .555
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Table 4.18b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=.5, v=.3

Semi-elliptical crack, In-plane shear

Mode 3, K3/K3I0

Ly/h .2 4 .6 .8 .9 .95
y/a
0. .738 .547 .467 .350 .249 .184
.1 737 .546 .465 .350 .249 .183
.2 734 .542 .462 .350 .250 .181
.3 .730 .537 .455 .349 .250 179
.4 723 .529 .446 .348 .252 .180
.5 714 .518 .433 .344 .254 .182
.6 .702 .506 .415 .335 .253 .184
.7 .685 .492 .393 .319 .247 .182
.8 .661 .477 .367 .290 .228 171
.9 .622 .465 .340 .248 .190 .142
.95 .583 .4687 .336 .228 .166 121
.98 .540 .480 .348 .226 .157 111

Mode 2, K2/K3I0(X100)

Lo/b -2 4 .6 .8 .9 .85
y/a
0. .000 .000 .000 .000 .000 .000
1 ~.087  -.229 -.207  -.107 -.058 -.037
.2 -.168  -.450  -.412  -.213 -.116 -.071
.3 -.239  -.656  -.614  -.320 -.172 -.103
.4 -.285  -.838  -.809  -.428 -.229 -.135
.5 -.331 -.984  -.994  -.539 -.288 -.169
.6 -.341 -1.08  -1.16 -.654 -.352 -.206
7 -.323  -1.10  -1.30 ~.777T  -.427 -.252
.8 -.270  -1.01 -1.36 -.904 -.515 -.309
.9 -.177  -.732  -1.22  -1.00  -.618 -.385
.95 -.110  -.477 -.924  -.937 -.838 -.415
.98 -.057  -.254  -.534  -.677 -.528 -.367
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Table 4.18b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=.5 , v=.3
Semi-elliptical crack, Twisting

Mode 3, K3/K3TO

Ly/h .2 4 6 .8 .9
y/a
0. 712 .411 .103 -.636 -2.17
.1 .713 .413 .108 -.625 -2.15
.2 .714 .419 .124 -.592 -2.08
.3 717 .431 .149 -.533 -1.97
.4 .720 .447 .186 -.445 -1.79
.5 724 .468 .235 -.320 -1.53
.6 .729 .496 .297 -.149 -1.16
7 .733 .531 .375 .078 ~-.628
.8 .734 .577 .472 .370 .124
.9 .724 .645 .604 .741 1.13
.95 .702 .703 .713 .994 1.76
.98 .667 .765 .831 1.23 2.30

Mode 2, K2/K3TO

Ly/h .2 4 6 .8 .9
y/a
0. .00000 .00000 .0000 .0000 .0000
.1 -.00097 - .00320 -.0046 -.0080 -.0179
.2 -.00189 -.00631 -.0093 -.0160 -.0351
.3 -.00269 -.00922 -.0138 -.0238 -.0516
.4 -.00333 -.0118 -.0182 -.0316 -.0674
.5 -.00373 -.0139 -.0224 -.0394 -.0831
.6 -.00386 -.0153 -.0262 -.0473 -.0994
7 -.00366 -.0156 -.0293 -.0554 -.117
.8 -.00307 -.0144 -.0308 -.0638 -.138
.9 -.00202 -.0105 -.0277 -.0698 -.161
.95 -.00126 -.00686 -.0209 -.0650 -.164
.98 -.00065 -.00365 -.0121 -.0468 -.135
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.95

-6.01
-5.92
-5.70
-5.39
-4.99
-4.44
-3.63
-2.40
-.578

1.98

3.59

4.87

.95

.000
-.045
-.087
-.124
-.159
-.193
~-.229
~-.269
-.319
-.383
-.405
-.354



Table 4.19a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=1. , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

O
~
p

OO W00 ~I D U WD - -

O <
~
)

OO W0 DU W R

Lo/h 2 .4 .6 .8 .9 .95

1.00 .994 .957 .839 .730 .644

1.00 .994 .955 .836 .727 .640

1.00 .993 .949 .825 .715 .629

.999 .990 .939 .807 .696 .610

.999 .986 .923 .780 .668 .583

.999 .979 .899 .744 .630 .547

.998 .969 .864 .694 .581 .501

.997 .950 .812 .628 .b17 .443

.994 .915 .731 .b37 .434 .367

.985 .826 .587 .401 .315 .263

5 .968 .709 .452 .293 .226 .187

8 .919 .534 .306 .190 .145 .119
Mode 3, K3/K20(x10)

Ly/h .2 4 6 8 9 .95

.0000 .0000 .0000 .0000 .000 .000

.0031 .0212 .0060 -.0298 -.052 -.056

.0063 .0427 .0115 -.0599 -.103 -.112

.0095 .0646 .0157 -.0905 -.153 -.165

.0127 .0870 .0180 -.122 ~.201 -.215

.0160 .110 .0177  -.153 -.245 -.260

.0192 .132 .0136 -.184 -.284 -.297

.0221 .153 .0044 -.212 -.313 -.322

.0240 .169 -.0119 -.234 -.325 -.326

.0229 .174 -.0385 -.236 -.299 -.290

5 .0192 .167 -.0562 -.211 -.249 -.235

8 .0134 .1561 -.0626 -.161 -.178 -.164
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Table 4.19a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=1. , v=.3

Rectangular crack, In-plane shear

Node 3, K3/K3I0

«
~
Y

O
~
[+

OO W 00 ~I T U LD -

Ly/h .2 4 .6 .8 9 .95

.826 .669 .625 570 .472  .384

.826 .668 .624 568  .470  .382

.824 .665 .620 .564  .466  .378

.821 .659 613 555 .457  .370

.816 .651 .603 .543  .445  .359

.809 .639 .589 526 .428  .344

.796 .621 .570 502  .404  .323

.775 .593 .541 469  .372  .295

.736 .549 .498 421 .327  .255

.646 .468 .424 340 .254  .194

5 .540 .392 .354 265 .191  .144

8 .405 .308 .268 183  .128  .095

Mode 2, K2/K3I0(x10)

Ly/h .2 4 6 .8 .9 .95
.0000 .000 .000 .000  .000 .0000
-.0105  -.043  -.063  -.049 -.031  -.0200
-.0211  -.086  -.125  -.096 -.060  -.0392
-.0320  -.128  -.185  -.140 -.088  -.0567
-.0432 -.170  -.240  -.178 -.111  -.0715
-.0548  -.211  -.289  -.209 -.129  -.0827
-.0665  -.248  -.327  -.229 -.140  -.0893
-.0780  -.279  -.349  -.236 -.142  -.0898
-.0882  -.298  -.346  -.222 -.131  -.0825
-.0950  -.286  -.296  -.178 -.103  -.0639
5 -.0951 -.248  -.232  -.133 -.076  -.0468
8 -.0905 -.188 -.158 -.873 -.049 -.0302

133



Table 4.19a

under twisting loads, a/h=1. , v=.3

Rectangular crack, Twisting

Ly/b .2

<
~
o

0. .806
.805
.804
.800
.795
.786
773
.749
.705
.605
.487
.336

;O@(Dm\]@m»kwl\)'—‘

00 Ut

Ly/h -2

«
~
»

0. .00000
-.00117
-.00236
-.00357
-.00483
-.00612
.00743
-.00871
-.00985
-.0106

-.0106

.0101

OO0 TD W
|

00 n
|

|

Mode 3, K3/K3T0

.4 .6 .8
.5bb .310 -.354
.554 .308 -.358
.550 .302 -.369
.543 .201 -.389
.532 .274 -.417
.515 .251 -.455
.491 .218 -.504
.455 172 -.564
.397 .104 -.630
.291 .004 -.673
.193 -.073 -.628
.091 -.116 -.497

¥ode 2, K2/K3TO

.4 .6 .8

.0000 .0000 .0000
.0058 -.0126 -.0267
.0116  -.0250  -.0527
.0174 -.0369 -.0770

.0231 -.0480 -.0989
.0286 -.0579 -.117
.0337 -.0658 -.130
.0380 -.0705 -.135
.0405 -.0702 -.129
~-.0390 -.0603 -.105
.0339 -.0475 -.0791

.0256 -.0325 -.0522
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cont. Normalized stress intensity
factors for a rectangular surface crack in a plate

.01
.02
.03
.06
.10
.15
.20
.24
.24
.07
.75
.27

.000
.063
.125
.182
.233
.274
.301
.310
.293
.234
.175
114

.95

.48
.49
.51
.55
.59
.63
.66
.62
.40
.63
.60
.25

.95

.000
-.171
-.337
-.491
-.625
-.733
~-. 804
-.824
-.774
-.613
-.454
-.295




Table 4.19b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=1. , v=.3

Semi-elliptical crack, Out-of-plane shear

Mode 2, K2/K20

O«
~.
[+

© WO W00~ U W DD

O <
~
Y]

O WWO IO Uk W -

Ly/h .2 4 6 .8 9 .95
.996 .953 .851 .693 .576 .487

.989 .949 .848 .690 .571 .477

.969 .935 .840 .682 .557 .453

.939 .910 .826 .670 .538 .425

.888 .875 .805 .655 .518 .399

.823 .826 776 .637 .498 .377

.740 .760 .736 .616 .479 .360

.634 .671 .680 .590 .462 .346

.499 .548 .593 .5561 .442 .333

.318 .366 .437 .466 .398 .308

5 .197 .232 .295 .356 .328 .263
8 .102 .123 .161 .213 .212 .178

Mode 3, K3/K20(Xx10)

Lo/h 2 .4 .6 .8 .9 .95
.0000 .0000 .0000 .0000 .0000 .000

.0048 .0125 .0031 -.0283 -.0405 -.040

.0094 .0250 .0080 -.0523 -.0766 -.075

.0135 .0375 .0165 -.0680 -.104 -.102

.0170 .0498 .0299 -.0712 -.119 -.118

.0197 .0616 .0489 -.0583 -.116 -.120

.0215 .0726 .0733 -.0266 -.0914 -.102

.0221 .0823 .102 .0245 -.0410 -.062

.0216 .0907 .135 .0924 .0351 .005

.0196 .0964 .170 .173 .131 .092

5 .0176 .0989 .193 .223 .187 .144
8 .0153 .101 .217 .272 .239 .188
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Table 4.19b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=1. , v=.3

Semi-elliptical crack, In-plane shear

Mode 3, K3/K3I0

. O
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Y
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«
~
»

Ly/k -2 4 .8 .8 .9 .95

.800 .635 .577 .489  .382  .299

.799 .634 .575 .487  .381  .295

.795 .629 .568 .483  .376  .288

.789 .622 .557 .475  .370  .279

.780 612 .542 463  .362  .271

767 .598 .521 .446  .352  .263

.750 .582 .496 .421  .336  .253

.726 .563 .466 .389  .311  .236

.690 .541 .433 .346  .275  .209

.627 .513 .399 297  .227  .170

5 .567 .496 .387 277 .204  .149
8 .493 .483 .393 277 .200  .144

Mode 2, K2/K310(x10)

Lo/h -2 4 .6 .8 .9 .95
. .0000 .000 .000 .000  .0000  .0000
1 ~.0133  -.043  -.050  -.031 -.0174 -.0101
.2 ~.0259  -.083  -.099  -.063 -.0347 -.0199
.3 ~.0368 -.121  -.145  -.094 -.0519 -.0296
.4 ~.0452  -.153  -.189  -.124 -.0695 -.0396
.5 -.0503 -.176  -.227  -.155 -.0878  -.0506
.6 ~.0514  -.188  -.257  -.184 -.107  -.0630
7 -.0478  -.18  -.273  -.210 -.127  -.0769
.8 ~.0390 -.162  -.265  -.228 -.146  -.0915
.9 ~.0246  -.110 -.208 -.218 -.154  -.1019
.95  -.0148  -.069  -.142  -.175 -.136  -.0948
.98  -.0075 -.036  -.077 -.107 -.816  -.0675
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Table 4.19b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under twisting loads, a/h=1. , v=.3

Semi-elliptical crack, Twisting

«
~
o

0. .779
.780
.781
.782
.784
.786
.786
.783
771
.737
.690
.618

DO WOO0ID U W -

[0 < ]

Lo/h -2

«
S~
o

0. .00000
~.00147
-.00285
-.00407
-.00502
-.00561
.00577
-.00540
-.00443
-.00281
-.00170
-.00086

€O OO 003D U WA
|

oo o

Mode 3, K3/K3TO

.4 .6 .8
.523 277 -.335
.525 .282 -.322
.532 .297 -.281
.543 .323 -.212
.559 .359 -.109
.581 .408 .030
.608 .470 .213
.642 .547 .445
.684 .644 .734
.739 779 1.11
774 .884 1.37
.800 1.00 1.65

Mode 2, K2/K3TO

.4 .6 .8

.0000 .0000 .0000
.0067 -.0103 -.0210
.0112 -.0204 -.0417
.0163 -.0302 -.0618
.0207 -.0394 -.0810
.0241 -.0476 -.0991
.0260 -.0543 -.116
.02569  -.0581 -.130
.0228  -.0571 -.140
.0158 -.0455 -.132
.0100 -.0313 -.106
.0062 -.0107 -.0644
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-1.71
-1.68
-1.59
-1.43
-1.19
-.863
-.413
.186
.957
1.93
2.58
3.23

.000
-.050
-.098
-.143
-.184
-.222
~-.259
-.292
-.321
-.325
-.281
-.187

.95

.27
.16
.88
.45
.88
.10
.03
.567
.38
.86
.46
.99

.95

.000

.133
.253
.358
.449
.533
.613
.690
.761
.791
.712
. 497



Table 4.20a,b Normalized stress intemsity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=2. , v=.3

Rectangular crack, Out-of-plane shear

Node 2, K2/K20
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€O © 00D Ui WA -

Ly/h .2 4 .6 .8 .9 .95
1.00 1.00 1.00 .084  .955  .921
1.00 1.00 .999 .983  .852  .917
1.00 1.00 .998 .976  .942  .905
1.00 1.00 .995 .965  .925  .885
1.00 .999 .989 .047  .899  .853
1.00 997 .979 .919  .860  .809
1.00 994 .961 877  .806  .749
.999 987 .929 813  .730  .668
.998 .969 .867 714 .621  .557
.994 .915 .733 .548  .456  .399
5 .977 .826 .587 .407  .329  .283
8 .995 .670 .414 .268  .212  .180
Node 3, K3/K20(x10)
Ly/h -2 4 .6 .8 .9 .95
.0000  .0000  .0000  .0000  .000 .000
.0016  .0072  .0114 -.0066 -.034  -.052
.0034  .0148  .0227 ~-.0151 -.071  -.106
.0054  .0232  .0339 -.0274 -.112  -.163
.0078  .0327  .0445 -.0456 -.159  -.224
.0108  .0435  .0535 -.0718 -.214  -.290
.0145  .0556  .0591 -.108  -.276  -.359
.0191  .0678  .0579 -.155  -.341  -.424
.0241  .0768  .0443 -.211  -.400  -.472
.0275  .0725  .0070 -.263  -.421  -.467
5 .0257  .0556 -.0279 -.267 -.381  -.405
8 .0197  .0291 -.0585 -.229  -.294  -.300
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Table 4.20a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=2. , v=.3
Rectangular crack, In-plane shear

Mode 3, K3/K3I0

O
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Ly/h .2 .4 .6 .8 .9 .95

.841 .709 .699 .706  .641  .559

.841 .709 .698 .704  .640  .558

.841 .707 .695 700  .634  .552

.840 .705 .691 692  .625  .542

.838 .700 .684 .680  .611  .528

.835 .693 .673 .663  .591  .508

.830 .683 .657 .639  .563  .481

.820 .664 .633 604  .525  .444

.799 .631 .592 .551  .468  .390

.738 .556 515 .457  .372  .303

5 .646 .472 .437 .367  .287  .228

8 .512 .381 .345 .263  .196  .153

Mode 2, K2/K3I0(x10)

Ly/h .2 4 .6 .8 .9 .95
.0000 .000 .000 .000  .000 .000
-.0053 -.026 -.054 -.070 -.061 -.049
-.0110  -.054 -.110 -.140 -.122 -.098
-.0176  -.085  -.170  -.210 -.180 -.143
-.0256  -.122  -.236  -.278 -.235 -.184
-.0357  -.165  -.306  -.343 -.282 -.219
-.0484  -.216 -.380  -.399 -.317 -.242
-.0643  -.273  -.447  -.435 -.334 ~.250
-.0828  -.329  -.490  -.435 -.320 -.234
-.101 -.359  -.463  -.365 -.256 -.182
5 -.106 -.337  -.383  -.279 -.189 -.133
8 -.109 -.274  -.272  -.185 -.123 -.085
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Table 4.20a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=2. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

Ly/h .2 .4 .6 .8 .9
y/a
0. .823 .608 .434 .012  -1.15
.1 .823 .607 .433  -.008 -1.16
.2 .822 .605 .428 -.004 -1.19
.3 .821 .602 .421 -.025 -1.23
.4 .819 .596 .409  -.057 -1.30
.5 .816 .587 .391 -.101 -1.38
.6 .810 .573 .364 -.163 -1.51
.7 .799 .549 .323  -.250 -1.67
.8 .776 .504 .256 -.370 -1.85
.9 .708 .406 .132 -.532  -1.99
.95 .607 .300 .023  -.597 -1.88
.98 .448 .165  -.077  -.551 -1.51

Mode 2, K2/K3T0

Loy/h -2 4 .6 .8 .9
y/a
0. .00000 .0000 .0000 .000 .000
1 ~.00059 -.0035 -.0103  -.031 -.086
.2 -.00123 -.0073 -.0211 -.063  -.172
.3 -.00197 -.0115 -.0326  -.095  -.258
4 -.00287 -.0164 -.0453 -.128  -.342
.5 -.00399 -.0223 -.0592 -.160  -.421
.6 -.00541 -.0292 -.0737 -.190  -.489
.7 ~.00718 -.0369 -.0874  -.212 -.534
.8 ~.00926 -.0446 -.0967 -.218  -.534
.9 -.0113 -.0488 -.0923  -.189 -.448
.95  -.0118 ~.0458 -.0767  -.147  -.340
.98  -.0121 ~.0373 -.0546  -.098  -.224
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.95

.53
.55
.61
.71
.85
.03
.26
.54
.81
.78
.18
.96

.95

.000
.251
.502
.748
.986
.20
.38
.49
.47
.21
.906
.501




Eococooo\x

Table 4.20b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under  out-of-plane shear, in-plane shear, or
twisting loads, a/h=2. , v=.3

Semi-elliptical crack, Out-of-plane shear

Mode 2, K2/K20
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Ly/h .2 4 .6 .8 .9 .95
.999 . 986 .950 .876 .799 .723
.992 .981 .946 .870 .789 .704
.972 .964 .931 .852 .760 .658
.938 .935 .906 .823 .718 .601
.889 .893 .871 .786 .670 .544
.824 .837 .823 .741 .619 .491
.740 .762 .761 .687 .567 .442
.634 .665 .680 .623 .512 .395
.498 .536 .568 .538 .446 .344
.317 .354 .395 .403 . 347 .271
5 .196 .224 .259 .281 .252 .201
8 .102 .119 .140 .159 .147 .120
Mode 3, K3/K20(x10)
Ly/h .2 4 .6 .8 .9 .95
.0000  .0000 .000 .0000 .000 .000
.0060 .0189 .015  -.0257 -.055 -.065
.0116 .0373 032 -.0446 -.101 -.118
.0166 .0550 .062  -.0504 -.129 -.151
.0206 .0712 .076  -.0383 -.131 -.160
.0232  .0851 .103  -.0515 -.105 -.139
.0243 .0959 .134 .0489 .046 -.087
.0237 .1023 .163 .119 .039 -.006
.0213 .1031 .189 .197 .142 .094
.0170 .0970 .207 .271 .244 .196
5 .0140 .0901 .214 .309 .296 . 247
8 .0113 .0828 .218 .340 .338 .284
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4.20b cont.

Normalized

stress intensity
for a semi-elliptical surface crack in a
plate under in-plane shear loading,

a/h=2. , v=.3

Semi-elliptical crack, In-plane shear

[ -]

.829
.828
.824
.817
.807
.792
772
.744
.701
.624
.549
.467

.0000
.0125
.0243
.0349
.0436
.0493
.0512
.0482
.0393
.0241
.0141
.0068

Mode 3, K3/K3IO

.4

.687
.686
.681
.672
.660
.644
.625
.602
.573
.530
.493
.453

.6

.659
.656
.647
.631
.610
.583
.550
.513
.472
.428
.403
. 387

.623
.619
.608
.590
.564
.531
.489
.440
.384
.325
.298
.287

Mode 2, K2/K3I0(Xx10)

.4

.000
.043
.084
.123
.157
.183
.199
.198
172
.114
.069
.035

.6

.000

-.172 -

-.326 -

-.146 -
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.8

.000
-.069 -.
-.116  -.

041
083

.127
-.226 -.
-.274 -,
-.310 -.
.306
-.308 -.
-.226 -.

174
222
268

320

275.

.197
-.076  -.

110

.532
.528
.516
.497
.474
.444
.407
.362
.309
.251
.224
.213

.0000
.0181
.0384
.0626
.0919
127
.165
.204
.233
.223
.173
.102

.95

.442
.434
.417
.395
.371
. 346
.317
.281
.237
.188
.166
.157

.95

.0000
-.0038
-.0106
-.0224
-.0403
-.0646
-.0943
-.127
-.156
-.160
-.131
-.0806
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Table 4.20b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=2. , v=.3
Semi-elliptical crack, Twisting

Mode 3, K3/K3T0
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e N
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O
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Ly/h .2 4 .6 .8 .9 .95

.811 .587 401  -.020 ~-1.03 -3.75

.811 .589 406  -.006  -.999 -3.65

.812 .596 .421 .035  -.895 -3.34

.813 .607 .445 106 -.719 -2.87

.814 .624 .481 .208  -.463 -2.23

.815 .646 .528 345  -.115 -1.37

.813 .673 .588 .521 .343  -.228

.806 .706 .665 .743 927  1.24

.788 .745 763 1.02 1.66  3.11

.738 .784 .893  1.39 2.60 5.48

5 .673 .792 .980  1.85 3.25  7.07

8 .590 776 1.05 1.89 3.84  8.48

Mode 2, K2/K3TO

Ly/b -2 4 .6 .8 .9 .95
.00000  .0000  .0000  .0000 .000 .000
-.00133 -.0052 -.0104 -.0245  -.065  -.187
-.00261 -.0103 -.0208 -.0490 -.128  -.354
-.00376 -.0153 -.0312 -.0732  -.186  -.496
-.00473 -.0198 -.0416 -.0973  -.240  -.618
-.00540 -.0237 -.0514 -.121 -.201  -.729
-.00568 -.0264 -.0600 -.144 -.340  -.833
-.00541 -.0270 -.0655 -.163 -.384  -.928
-.00447 -.0242 -.0643 -.173 -.412 -.994
-.00277 -.0165 -.0494 -.152 -.383  -.941
5 -.00163 -.0102 -.0325 -.111 -.296  -.749
8  -.00079 -.0052 -.0172 -.0624  -.176  -.458
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Table 4.21a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=4. , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

. O
[
)
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~
)

Ly/h .2 4 .6 8 9
1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 .998
1.00 1.00 1.00 .999 .992
1.00 1.00 1.00 .993 .978
1.00 1.00 .997 .978 .952
1.00 .999 .988 .947 .902
1.00 .994 .961 .876 .806
.998 .967 866 .713 .620
5 .982 .914 .732 .547 .455
8 1.03 799 .543 .368 .295

Mode 3, K3/K20(x100)

Lo/h 2 .4 .6 .8 .9
.0000 .000 .000 .000 .000

.0044 .021 .047 .066 .027

.0094 .044 .098 .130 .036
.0157 .074 .161 .186 .004

.0245 .115 .241 .221 -.106
.0378 .175 .346 . 207 -.348

.0594 .268 .479 .085 -.803

.0960 .411 .627 -.240 -1.57

.158 .616 .720 -.910 -2.70

.250 .809 .526 -2.01 -3.97

5 .283 .760 .131 -2.57 -4.23
8 .249 .493 -.380 -2.60 -3.64
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.95

1.00

1.00
.999
.993
.982
.962
.925
.862
.752
.558
.399
.254

.95

.000

-.038
-.104
-.234
-.473
-.879

-1.53
-2.47
-3.70
-4.81
-4.77
-3.88



Table 4.21a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=4. , v=.3
Rectangular crack, In-plane shear

Mode 3, K3/K3I0

Lo/h .2 .4 .6 .8 .9 .95

y/a
0. .844 .722 .735 .797 .782 .728
.1 .844 .722 .734 .796 .781 .726
.2 .844 .722 .733 .793 .776 .720
.3 .844 .721 .731 .788 .768 711
.4 .844 .720 727 .779 .755 .696
.5 .843 717 .722 .766 .737 .675

\ .6 .842 .713 .713 .747 J711 .646

| .7 .838 .704 .697 .718 .672 .604
.8 .830 .686 .668 .669 .611 .541

| .9 .799 .633 .600 .573 .502 .432

, .95 .737 .556 .521 .474 .398 .334
.98 .621 .458 .424 .354 .281 .229

Mode 2, K2/K310(x10)

|

} Lo/h .2 .4 .6 .8 .9 .95
y/a
0. .0000 .0000 .000 .000 .000 .000
.1 -.0014 -.0068 -.016 -.031 ~.038 -.041
.2 -.0029 -.0146 -.034 -.064 -.080 -.083
.3 ~-.0049 -.0247 -.058 -.105 -.126 -.129
.4 -.0077 -.0388 -.090 -.156 -.181 -.181
.5 -.0120 -.0604 -.136 -.222 ~.245 -.236
.6 -.0191 -.0946 -.205 -.306 -.317 -.293
7 -.0313 -.150 -.303 -.404 -.388 -.343
.8 -.0526 -.237 -.429 -.493 -.435 -.364
.9 -.0860 -.345 -.526 -.499 ~.399 -.316
.95 -.103 -.372 -.491 -.411 -.310 -.238
.98 -.114 -.336 -.373 -.282 -.204 -.153
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Table 4.21a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=4. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

Ly/h .2 4 .6 .8 .9
y/a
0. .826 .624 .492 .259 -.405
.1 .826 .624 .491 . 257 -.413
.2 .826 .624 .490 .248 -.438
.3 .826 .623 .486 .233 -.483
.4 .825 .621 .480 .210 ~.b51
.5 .825 .618 .471 .175 ~-.648
.6 .823 .612 .456 .123 -.785
7 .820 .601 .430 .044 -.979
.8 .810 577 .381 -.0856 -1.26
.9 776 .507 .269 -.311 -1.67
.95 .708 .411 .145 -.484 -1.85
.98 .570 .261 -.0086 -.570 -1.72

Mode 2, K2/K3TO

Ly/h -2 4 .6 .8 .9
y/a
0. .00000 .00000 .0000 .000 .000
.1 -.00015 -.00092 -.0030 -.012 -.037
.2 -.00033 -.00197 -.0064 -.024 -.079
.3 -.00055 -.00331 -.0107 -.040 -.128
.4 -.00086 -.00522 -.0167 -.061 -.191
.5 -.00134 -.00812 -.0255 -.0980 -.271
.6 -.00214 -.0127 -.0387 -.127 -.372
7 -.00350 -.0202 -.0578 -.175 -.488
.8 -.00587 -.0319 -.0828 -.224 -.593
.9 -.00961 -.0467 -.1031 -.240 -.599
.95 -.0115 ~-.0505 -.0973 ~.205 -.492
.98 -.0127 -.0457 -.0745 -.144 -.3356
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5

.48
.51
.58
.70
.88
.13
.47
.92
.54
.28
.39
.65

.95

.000
.122
.255
.412
.606
.845
.13
.45
.70
.66
.34
.895



Table 4.21b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=4. , v=.3

Semi-elliptical crack, Out-of-plane shear

Mode 2, K2/K20
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Ly/h .2 4 6 .8 .9 .95
1.00 .997 .988 .965 .932 .889
.993 .991 .982 .956 .916 .860
.973 .973 .964 .930 .872 .788
.939 .943 .9356 .890 .809 .699
.890 .899 .893 .838 737 .612
.824 .840 .838 .776 .662 .5631
.740 .763 767 .703 .586 .458
.633 .663 .675 .618 .507 .390
.497 .532 .563 .513 .419 .319
.316 .349 .376 .362 .301 .230
5 .196 .221 .244 .244 . 206 .159
8 .102 117 .132 .136 117 .092
Mode 3, K3/K20(x10)
Lo/h 2 .4 .6 .8 .9 .95
.0000 .0000 .000 .0000 .0000 .000
.0049 .0170 020 -.0077 -.0408 -.063
.0095 .0336 .040 -.0097 -.0700 -.107
.0135 .0492 .062 -.0144 -.0790 -.123
.0167 .0632 .086 .0201 -.0638 -.109
.0188 .0750 .110 .0663 -.0246 -.068
.0194 .0826 .134 .102 .0344 -.007
.0183 .0850 .153 .154 .105 .065
.0154 .0800 .162 .201 .173 .134
.0108 .0660 .156 .230 .223 .186
5 .0097 .0585 .145 .228 .230 .196
.98 -.0030 .0244 .120 .254 .280 .244
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Table 4.21b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=4. , v=.3

Semi-elliptical crack, In-plane shear

Mode 3, K3/K3I0

Ly/b -2 4 .6 .8 .9 .95
y/a
0. .840 712 .709 .728 .672 .590
1 .839 .710 .705 .722 .664 .577
.2 .835 .704 .693 .704 .640 .545
.3 .828 .695 .675 .675 .606 .503
A4 .817 .682 .649 .635 .562 .458
.5 .802 .666 .616 .586 .511 .411
.6 .781 .645 .579 .529 .453 .360
.7 .751 .620 .537 .466 .390 .306
.8 .705 .587 .491 .400 .323 .249
.9 .622 .535 .439 .334 .257 .193
.95 .540 .485 .403 .301 .226 .166
.98 .451 . 427 .370 .279 .208 .156

Mode 2, K2/K3I0(x10)

Ly/h -2 .4 .6 .8 .9 .95
y/a
0. .0000 .000 .000 .000 .0000 .0000
1 -.0079 -.027 -.039 -.025 .0021 .0237
.2 -.0156 -.053 -.078  -.053 -.0031 .0349
.3 -.0227 -.079 -.117 ~.087 -.0206 .0279
.4 ~.0290 -.103 -.158 -.128 -.0524 .0283
.5 -.0338 -.125 -.197 ~.176 -.0971 -.0369
.6 ~.0365 -.142 -.233 ~.227 -.151 ~.0863
7 ~.0360 -.149 -.257 ~.9273 -.205  -.138
.8 ~.0306 -.137 -.254  -.295 -.242  -.178
.9 ~.0190 -.094 -.191 -.249 -.222  -.174
.95 -.0132 -.062 -.126 -.172 -.161 -.130
.98 .0064 .000 -.039 -.079 -.0810 -.0675
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Table 4.21b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=4. , v=.3
Semi-elliptical crack, Twisting

Mode 3, K3/K3TO

Lo/h 2 .4 .6 .8 .9
y/a
0. .822 .615 .470 .211 -.425
.1 .822 .617 .475 .224 -.391
.2 .823 .624 .489 .263 -.290
.3 .824 .636 .513 .330 -.119
.4 .826 .653 .548 .427 .129
.5 .826 .676 .594 .557 .464
.6 .824 .704 .655 .724 .898
7 .816 .738 .733 .936 1.45
.8 .795 776 .832 1.21 2.15
.9 .738 .806 .960 1.58 3.08
.95 .664 .794 1.03 1.83 3.72
.98 .572 .749 1.06 2.02 4.24

Mode 2, K2/K3TO

Ly/h .2 4 6 8 .9
y/a
0. .00000 .0000 .0000 .0000 .000
.1 -.00082 -.0029 -.0052 -.0116 -.033
.2 -.00161 ~.0058 -.0107 -.0238 -.066
.3 -.00237 -.0088 -.0167 -.0372 -.098
.4 -.00306 -.0119 -.0235 ~-.0529 -.133
.5 -.00363 -.0150 -.0313 -.0719 -.173
.6 -.00399 -.0179 ~-.0399 -.0949 -.223
7 -.00401 -.0198 -.0480 -.121 -.284
.8 -.00350 -.0194 -.0522 -.144 -.344
.9 -.00222 -.0141 -.0434 -.136 -.345
.95 -.00155 -.0095 -.0297 -.100 -.265
.98 .00068 -.0004 -.0104 -.0480 -.138
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.95

.21
11
.82
.37
.736
.107
.20
.59
.34
.65
.24
.53

.95

.000
-.106
-.199
-.281
-.357
-.442
-.547
-.680
-.822
-.844
-.664
-.360
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Table

4.22 Normalized stress intensity factor at
the center of a semi-elliptical crack subjected to

b=

Lol !
RES88888

.988 - .

0o

.982
.965

.944
.843
.764

.722
.716
.736
.770
.799
.800
.781
.721

.941
.825
.714
.626
.559
.504
.447
.347

out-of-plane shear, in-plane shear, and twisting
loads, v=.3
Out-of-plane shear, Mode 2, K2/K20

a/h .5 1. 1.5 2. 3. 4. 5. 6.
O/h
.1 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.2 .998 .996 .998 .999 .999 1.00 1.00 1.00
.3 .952 .982 .991 .995 .998 .999 .999 .999
.4 .883 .953 .976 .986 .994 .997 .998 .999
.5 .790 .909 .952 .972 .987 .993 .996 .997
.6 .685 .851 .918 .950 .978 .988 .992 .995
.7 .576 .780 .873 .920 .963 .979 .987 .991
.8 .467 .693 .811 .876 .938 .965 .978 .985
.85 .410 .640 .769 .844 .919 .952 .969 .979
.9 .350 .576 .714 .799 .889 .932 .954 .968
.95 .277 .487 .629 .723 .832 .889 .921 .942

In-plane shear, Mode 3, K3/K3I0

a/h .5 1. 1.5 2. 3. 4. 5. 6.
O/h
.1 .899 .927 .935 .939 .942 .943 .943 .943
.2 .738 .800 .820 .829 .837 .840 .842 .843
.3 .619 .698 .727 .740 .752 .758 .760 .762
.4 .547 .635 .670 .688 .704 .712 .716 .719
.5 .b03 .600 .642 .665 .688 .699 .706 .710
.6 .467 .577 .629 .659 .692 .709 .720 .727
.7 .420 .547 .613 .653 .700 .726 .743 .755
.8 .350 .489 .570 .623 .688 .728 .754 .773
.85 .304 .443 .529 .588 .664 .711 .744 .767
.9 .249 .382 .470 .532 .617 .672 .711 .740
.95 .184 .299 .380 .442 .530 .590 .635 .670

Twisting, Mode 3, K3/K3TO

a/h .5 1. 1.5 2. 3. 4. 5. 6.
0/h
.1 .895 .924 .932 .936 .939 .940 .940 .941
.2 .712 779 .801 .811 .819 .822 .823 .824
.3 .550 .642 .674 .689 .702 .708 .710 .712
.4 .411 .523 .566 .587 .606 .615 .619 .622
.5 .273 .410 .467 .497 .526 .539 .547 .552
.6 103 .277 .357 .401 .447 .470 .484 .493
.7 -.152 .074 .193 .263 .341 .382 .408 .425
.8 -.636 -.335 -.144 -.020 .128 .211 .264 .300
.85 -1.13 -.766 -.508 -.330 -.109 .020 .103 .162

.9 -2.17 -1.71 -1.32 -1.03 -.654
.95 -6.01 -5.27 -4.43 -3.75 -2.81
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.238
-.425 -.273 -.165 -.021
-2.21 -1.79 -1.49 -1.09 -.823

o

10.

b pod o ot

© O OO ©
SEIRESBRE

.988
.977

10.

.944
.844
.765
.724
.719
.741
.780
.815
.821
.809
.757

10.

.941
.826
715
.628
.562
.511
.460
377
.286
.071
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Table 4.23 The effect of Poisson’s ratio on the
normalized stress intensity factor at the center
of a semi-elliptical crack subjected to out-of-

plane shear, in-plane shear, and twisting loads,
a/h=1.

Out-of-plane shear In-plane shear Twisting
Mode 2, K2/K20 Mode 3, K3/K310 Mode 3, K3/K3TO

0. .3 .5 0. .3 .5 0. .3 .5

1.00 1.00 1.00 .935 .927 .921 .932 .924 .918
.994 .996 .997 .820 .800 .787 .801 .779 .766
.974 .982 .987 .725 .698 .682 .673 .642 .623
.836 .953 .966 .666 .635 .617 .562 .523 .500
.878 .909 .932 .634 .940 .580 .457 .410 .382
.806 .851 .886 .615 .577 .555 .337 .277 .242
.721 .780 .827 .591 .547 .521 .1556 .074 .028
.624 .693 .751 .541 .489 .460 -.216 -.335 -.398
.569 .640 .703 .498 .443 .414 -.613 -.766 -.844
.503 .576 .643  .437 .382 .353 -1.50 -1.71 -1.82
.416 .487 .554  .350 .299 .273 -4.85 -5.27 -5.44
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Table 4.24 The LSM approximation to the stress
intensity factor at the corner of a semi-
elliptical surface crack subjected to out-of-plane
shear, in-plane shear, and twisting loads, a/h=1,
v=.3.

OUT-0F-PLANE SHEAR  IN-PLANE SHEAR TWISTING

kp(h/2) k50 ky(h/2) kg(0)  ky(b/2) ky(0)
031? 031?' 041—:: 041_; 051:' 051_;

=
(=]

~

=

© © 00 00 ~I D U W NI

.000 .005 .124 -.000 .116 -.000
.000 .033 .237 -.0005 .206 -.0005
.001 .074 .336 -.002 .272 -.002
.004 .125 .421 -.005 .317 -.004
.009 .186 .496 -.009 .348 ~.006
.017 .256 .563 -.014 .368 -.009
.028 .332 .625 -.020 .380 ~-.012
.042 .416 .682 ~.025 .387 -.014
5 .050 .461 .709 -.028 .389 -.015
.059 .507 .735 -.030 .390 -.016
5 .069 .556 .761 -.032 .390 -.017
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Figure 4.1 Comparison of mode 1 line-spring model
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Figure 4.2 Comparison of mode 1 line-spring model
with and without transverse shear deformation to

Newman’s and Raju’s finite element solution, Ref.
[33], for a/h=1., v=.3
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The arrow points to the through crack limit.
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Figure 4.8 Line-spring model approximation to the
stress intensity factor at the corner of a through
crack subjected to bending allowing for contact
stresses as compared to the value assuming no
contact, a/h=1., v=.3
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CHAPTER 5

Through Cracks in Shallow Shells

In this chapter the singular integral equations for a series of
collinear cracks in a shallow shell which allows for transverse shear
deformations will be derived. The crack will be assumed to lie along
a principal line of curvature which uncouples the symmetric (mode 1)
from the skew-symmetric (modes 2,3) formulation. The emphasis will be
on crack interaction for some common geometries. Also the equations

are needed for the part-through crack problem of the next chapter.

5.1 Formulation
The governing equations, both dimensional (Eqns. 5.1a-16a,18a,

19a) and non-dimensional (Egqns. 5.1b-16b,18b,19b) are listed below.

The dimensional relationships are defined in Appendix A. From
equilibrium,
oN oN oN oN
611+ 12 o , X, _X¥_go | (5.1a,b)
X4 3x2 0x oy
oN oN oN oN
2,22, XL W o, (5.2a,b)
Xq sz 0x oy
aﬂ+iv_z+1[gz_N]+1[a_LN]
axl ax2 axl Bxl 11 Bxl ax2 12
) [BZ 8 _(0Z -
c 0By ) (B ). Gxgx) =0,
ze axl 12] 6x2[3x2 22] 1’72
a_v_z+"_‘fz+1_24m1{§_[a_z_N]+a_[a_zN]+
Ox oy 5 Ox 8x xx ox 0y xy
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2 (22 2_(o1 _
5 axny] - 5 ayNyy] valx,y) J =0 , (5.3,b)
8M11 6!12 )
3%, *ox, 179
1 2
auxx aMx! 5
et oy T2 k= 0 (5.4a,b)
3M12 6!22
5x, "ox, '2°0
1 2
aux oM 5
—Xax + —Hay " 12() Vy =0 , (5.5a,b)
where q(x,y) is normal loading to the plate surface and Z(x,y) is the
equation of the mid-plane of the shell. The other variables are
standard shell quantities (see Figs. 2.1,2.3). From kinematical
considerations,
du du
_ _ 1D 932 3D _O0u 0Z ow
€11 " 3x, " 9x, dx, ’* Exx ~ox ' 3x dx ’ (5.6a,b)
1 1771
ou Ou
_ 2D 0% 3D _0v . 0Z Ow
€22 = 3x, * Bx. Ox, ° yy 0Oy * By 8y (5.72,b)
2 2 772
o _1[%p Oup sz %ump oz a“sn]
12 2 ax2 axl axl 6x2 6x2 Oxl
_1[Bu _ 8 _ 3Z3w 0% 3w
exy -2 1 9y Tax T oax oy * dy Ox ] ! (5.8a,b)
du
_ . 3D _ Ow
91 = axl + pl, , Ox =35 * px , (5.9a,b)
du
__3D _ Ow
6, = B, *Pe 0 Oy eyt Py (5.10a,b)




where 91 and 92 are the total rotations of the normals. For classical
theory they are zero showing that normals to the shell surface stay

normal, 1i.e. there is no deformation transversely. The constitutive

srelations #(HookeAs~ law) pgareqy slpliiibiie e S oo 50 W0 - WpBo XM pugiadeamt &,

1o o

heyy = § (N - Ny e = Ny - (5.11a,b)
1o L

h622 - E (N22 VNll) ’ Eyy - Nyy VNXX ) (5.12a,b)
_ 1 _

h€12 B 2/‘ N12 ’ Exy - (1+V)ny ’ (5.13a,b)

where E is Young’s modulus and v is Poisson’s ratio. From bending,

” 0f; 0f, ]
- ——— + w— ,
11 axl axz
op )
Mo = : 2 axx + V3 . ] ) (5.14a,b)
12(1-v7) y
0p op
_ 2 1
Mo2 =D | Bx, " Yox, ] .
8p, 9p
Myy = : 5 | Ve * By ] , (5.15a,b)
Woo12(1-0%) y
N, = 202 | %, %y ]
12 2 6x2 axl
3p. dp
= 1 x 'y
My = 320 [ 8y * Bx ] ) (5.16a,b)
vwhere
3
- 2 (5.17)
12(1-v9)

The linear transverse shear stress-strain relationships are,
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6, =~v. , 6 -v (5.18a,b)

1 hB 1 X X
o1 _
6y =15 Vo > 0, = v, (5.19a,b)
where
_ _S5E _
B=Zawm (5.20)

From here on only non-dimensional variables will be used. Define

¢ (x,y) such that

2 2 2
No=2¢ oy 0y _ 3% (5.21)
XX ay2 Yy ax2 Xy Oxdy

Introduce the new unknowns Q(x,y) and ¥(x,y) defined as follows,

8, 0p
0(x,y) = 57 - 5 (5.22)
8, 0f
ooy = e[ 52X e 5t ] - wen (5.23)
where
“ =5y (5.24)

Also it will be assumed that Z(x,y) is limited to the following,

2 2

3%z -
' OxO8y

)
Ox

[\

)

’

dy

(]
1

[y

sy

|

(]
FOII
e

(3]
I
=

, (5.25)

™o
=<

12
thus making the curvatures constant. For convenience the following

constants are introduced,

Af = 12(1—u2)(h/R1)2 . Ny = 12(1—V2)(h/R2)2 ,
A, = 12(1—V2)(h/R12)2 , M 212004, y=22 (5.26)

If all but Xl are zero, an axially cracked cylinder results; if X2 is
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the only non-zero quantity, then the crack will be circumferential,
see Fig. 2.1. R12 is needed when the crack does not lie along a
principal 1line of curvature. After some algebra Eqns. 5.1-19 are

reduced to the following equations,

2 2 2
4, 1 [ .20 2 @ 2
v - L {22 g Y wix,y) =0 | (5.27)
\2 { 15,2 " P2 Bxdy * M2 2 }
2 2 2
4 2, 2.f .20 2 9 2.9
vie + 22 (1-xV ){ xl———ayz - DT, 5y * Vo3 } $y) =
MA-)ax,y) (5.28)
2
K% -9 -w=0 , (5.29)
511531 vih-n=-o0 . (5.30)

Now 1let q(x,y) = O and also confine the crack to a principal line of

curvature by setting X12 = 0. This reduces Eqns. 5.27,28 to

2 2
4, 1 (.28 .28
v - L 22 28 Y iy =0 (5.31)
A Oy 0x
4 .2, 2.(.28% .20°
vhe 220D {(028 22 ) gy =0 (5.32)
Oy ox

These last four equations will be solved by using Fourier transforms.

First Eqns. 5.31,32 are reduced to one equation in ¢(x,y),

vits + v viiZp - 0 (5.33)
where
2 2
2 _,2097 28"
R R e I (5.34)
Oy Ox

The Fourier transform is defined for any function as
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+00

Poy) = & [ Foxa) e % 40

—00

I

[+ iya
J Flxy) % dy

F(x,a)

The transforms of the various operators of Eqn. 5.33 are

25 _
FT[ Vo ] = £F _ %5
d“x
4= o=
Fr[ vip ] = 4F _ 2222 E L ofF
d d
X X
8= 6= 4= o= .
FT[ viydp ] - 4F _ 2?4 E 6a*d L 42°5E L o8
dx dx d'x d“x
FT[ V20%F | - VAT 020 20% \a%F
Al = A 122 2 * M )
d"x d“x
FT[ V2v2v2F | = MLF 222202, azx“)if-E .
Al ] =27 1’2 2) 4
odat. 2x2x2a4)935 N
1 1%2%) 2 1
X
The Fourier transform of Eqn. 5.33 is
g _ (422+ nk4)éfz + (62t 2% 20092,2, mx“az)ﬂ
&, 2) 6 9t 2RA N 2 ) 3

6 2,2 2 4
- (4a + 2x1x2a + nxl

which has the solution

_ 4 m.x
¢(x’a) = ZRJ (a)e J , x>0 ,
i=1
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)

(5.35)

(5.36)

2_
4 2,2 4.d7¢ 8 44 6,4,
a+ 2mx1x2a )dzx + (@ + kla +AQ A2)¢ =0,

(5.37)



#(x,a) = j{jR (a)e , x <0 , (5.38)
where
m. = ~(p.+a2 1/2 ) j:1)2)3)4 )
] ]
, = +(pj_4+a2 172 i=5,6,7,8 . (5.39)

The roots Py j=1,2,3,4 are obtained from the solution of the

following characteristic equation,

4 4 3 2,2 2 4 2 4, 2
p - nkzp + (2Lk1X2a - 2&X2a + Xz)p +
2,2 2 4 2 2 4
+ (2nX1X2a - mx2 - nk L 2X - 2 kz)a P+
f 02292t oo . (5.40)
2 1
This quartic is solved numerically. For large and small a an

asymptotic expansion for the roots is given in section J.1 of Appendix
J. Since the crack has been assumed to lie on a principal line of
curvature, only the portion of the shell for x>0 need be considered.

The transformed solutions of the other unknowns appearing in Eqns.

5.29-32 are:
N(x,a) = A(@)e™™ , x>0 , (5.41)
_ 4 m.X
¥(x,0) = 2 R (@K (@)e ? , x>0, (5.42)
=1
- 4 m.X
w(x,a) = :E:Rj(a)Kj(a)(&pj—l)e I, x>0 , (5.43)
=
vwhere
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_[ P ]1/2

r - i) , (5.44)
p?X2
K.(a) = . (5.45)
j 2,2 22
(/cpj—l)(mjk2 kla )

The next step is to express the shell quantities in terms of A(a) and
Rj(a)’ j=1,2,3,4, which are unknowns in the problem to be determined

by boundary conditions as yet unspecified. These expressions are

-1 (7 2 4 5% _ia
Nxx: EJ a }:Rj(a)e I e 4q , (5.46)
—00 j:l
1 *”i 2 DX _iay
N =4 J m.R.(a)e 7 e da , (5.47)
Yy 2 51
i J*“ i X iy
= 5= a2 m.R.(a)e ' e da , (5.48)
xy 27 ) s
1-v -i (% rx -iay
P, = 3 o J-“aA(a)e e da +
1 +0 4 m.X .,
R 5} D> mKR(a)e ) e Way (5.49)
-~00 j:l
1-v 1 (*° rx_-iay
B = 7~ —J rA(a)e "e " ’da -
y 2 27 w
. +0 4 m.X _.,
- ad KR.(@)e ) e ¥da |, (5.50)

+00 4 m.Xx .
M =L L j Z(m‘;?-uaz)xjnj (@)e I ¢ 14,
2

_WJ

2 . +00 .
- EiliZl— %; I arA(a)e™ e Y dq + (5.51)
227 ~o
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11 2 03X _ia
Myy = *—4 o7 J Z(Vm -a )KjRj (a)e 1 e *Hda
x(1-v 2 . +00 .
2 L [ ara()e™e M da (5.
2\ -0
. o 4 m.x .
_ -1y i r i" -iay
My = 1 o _magégmjKjRj(a)e e da
2 +00
SE L 2@ W da (5
4\ -0
v, = __(Ml —l J aA(a)erxe 1Y 44 4
.x 1ay
J ZmeJKJRJ (a)e da , (5.
+00 .
V = ik%)' 5—; rA(a)erxe—lay da +
)N —w
1 i +00 j a
i -iay
-~ o2 K.R. d 5.
3N aZpJ R@ed e an
. 4 .
du - 1_J+wl{ 2,2 3 } -iay
dyix+0 ~ 2x W ()‘2/)‘ );RJ (a) [mjKj (Iij—l) - mJ] € da
. (5.
4 .
dv| _ L J*“ 2 -iay
dylx+0 ~ 27 _mjglmikj (@) e da +

2 _3 +00 4 s
cygm? 2 I_w aggikj(a)Kj(mpj—l) e 1Y g4 (5
1 (& = 29
- L j > u%h (2) e da + yO,M? 5T g (5.

_ooj:]_
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5.2 Symmetric Loading, Mode 1

There are currently five unknowns in the problem, A(a), and Rj(a)
for j=1,2,3,4. The first step is to reduce these to two unknowns by

using the symmetry conditions,

ny(o»)') =0 , (559)
N 0,y) =0 (5.60)
V.(0,y) =0 . (5.61)

Then replace the remaining two unknowns with the crack surface

displacements,
u () = ulxy)/h = u(0,x))/h (5.62)
uy(¥) = B, (x5) = B (0",x,) . (5.63)

The equations that relate ui(y) to the original unknowns are:

4
_ 2
A(a) - ia(l—V) j:ZlmejKJRj , (5.64)
4 0 .
%mjKjRj{ [rane 1]"3 - Pan) -0, (5.65)
J:
< -1
?iimjxjﬁj{ oy 1 } = @ (5.686)
J:
4
;mjﬁj =0 , (5.67)
J:
4 kp.-1
2, i 2\ _
;E;miRi{ K o ) @ (5.68)
where
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+00

4@ =of w®e®d , k1,2

The solution to Eqns. 5.65-68 is

R, (a) = EEI — D(a) , §=1,2,3,4

where

D(a) = (K K + K K4)(Pl P2)(P4 p3) +

(5.69)

(5.70)

+ (K Kg+ KoK,) By~ pg) (B~ by) + (KKa+ KiK,) (py- P,) (g~ Py)

711 = a[KZKS(ps- p2) + K2K4(p2— p4) + K3K4(p4— p3)]
712 = —a[K1K3(p3— pl) + K1K4(p1— P4) + K3K4(p4' p3)] »
N3 = a[KIKZ(pz— pl) + K1K4(p1' P4) + K2K4(P4' 92)] ’

‘“[K1K2(P2" Py) + K K3(py- p3) + KoKg(pg- Pz)] J

Tg =
2
2 K
Ty = a;izz - 24 p){1e1-0)a?s 11p,- @?(1-0)] -
2y ro{lse® g )
- a (p2_ P4) [E(I"V)a + ]p3_ a (I_V) -
Ky { 2 2
oy p{[F(1-0)a 11p- Fn))
2
~Y10oA K
Tog = a;izz 2y p{(s0)a% 11p- @?(1-0))
K

+ 20y pp{(s-va 11p,- 210}
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K

4.
Y (p3

2
Ton = i3t
23 = 7 2,2

K

2
- 2 (pl_

K

A4
- E(py

2
1. - RV
2477 2,2

K

2
*a (pl_

K

3
a (p2—

pp{[s-0a% 10p,- o210}

K
- 2oy p{ra1a? 11p,- 20 -

p{e0)a% 11p,- o2 (1)) -
pp{le0a% 10p- 210}

!

+ 2y o {1810)a% 13p - a2(1-1))

p) {s(1-0)a? 11 e2(1-1))

p{[ra-)a? 11p,- a?(1-1))

(5.72)

The following two mixed boundary conditions will produce two singular

integral equations for the determination of the crack opening

displacements:

Nxx(0+)y) = _fl(Y) ’ y in Ln ’

ul(y) = u(0+,x2)/h =0 , y outside of Ln ,

Mxx(o+)Y) = _fz(Y) ’ y in Ln ’

u,(y) = ﬁx(0+,x2) =0 , youtside of L

where

Ln = (al’bl)’ (327b2): ..

L (apb)
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each section (ai’bi)’ defining a crack on x=0. Egns. 5.73,75 with

46,51,64 for y in Ln become,

-1 lim 2 %% _iay
-1, = 57 0 j{:n e’ e da (5.78)
4 (y) = 1+v lim e { _preTX EZ:m KR .
1 1200 = ox 300 W 5 iP5t
1 .x 2 4 m.X _ia
* 1o EE:pJKJRJe +a :E:KjRje . } e ' da . (5.79)

i=1
After making use of the odd/even nature of the infinite integrals,

Eqns. 5.78,79 may be written as follows,

1 lin (" 2& myX
1,00 = -3 50 @ ;g:Rje cosa(t-y) da , (5.80)
0 ;=1
4 1+v lim e
f,(0) =5 w0 0 {-"e ;meJJJ+

4 m.x 2 4 m.X
zz: K R e +a :E:KjRje J } cosa(t-y) da . (5.81)
i=1 j=1

Next Eqns. 5.69,70,74,76 are substituted into Eqns. 5.80,81 to obtain

£ _ 1 lim j Z z]_(l m.x
- 1(y) = = ¥ x40 ZE:uk(t) D(a) o, © cosa(t—y) da dt +
]
(5.82)
4 . 4 7
2% 1w lin Mo (o rx
f,(y) =% x+0 Zu (t) I g n; K. {A’.rmjpje +
m. X
+ 15 @-va®) e I} cosa(t-y) da dt . (5.83)

The infinite integrals must now be analyzed. These integrals may not

exist without the exponential decay in x. In the limit as x gets
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small, the leading order term at a approaching infinity provides the
integral that must be interpreted in the finite-part sense or perhaps
in the Cauchy principal value sense, see Appendix B. Also the large a
behavior must be determined so that the infinite integrals will
numerically converge. The more terms that are known, the more
accurate/less expensive the numerical integration. This analysis is
presented in section J.2 of Appendix J. The form of the equations

after using these results is,

1 } ul(t) dt +

-£.(y) = o2
1 2r Ln(t—y)z

+

12 1
p1[J1Mtﬂu®Nt+m ;k““ﬂ“d”“+

l'l n

4 .
- lj 1(1-,) I{ Z 7—11 - %} cosa(t-y) da dt +
A 3 4 1,.
- % I uz(t) D%a) z: —%; cosa(t-y) da dt +

1 jL uy(6) T, (t,y) dt - 3 IL uy(6) T p(6,y) db , (5.84)

r
n n
SR L gt LA
1-v 2 2 2
v T L (t-y)

21 1 22 1
gl ILlnlt—ylul(t)dt -2l JLlnlt-yluz(t)dt N
n n

A 4 1,.
1 e 11j {_
* y JL ul(t) JOD(a) ;é; u, Kj lr.rmjpj +
n
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1 2
Ay (mj—Vaz) } cosa(t-y) da dt +

2 2 1+v)a
+ T%; (mj—va ) } + 1—151—] cosa(t-y) da dt +

. IL uy(8) Ty (6,y) db + 7 jL ug(8) L,y(t,y) dt . (5.85)

n n

All quantities not defined in this chapter are given in Appendix J.

5.3 Symmetric Loading, Mode 1, results.

As mentioned at the start of this chapter, the primary motivation
for this analysis is to study the effect of shell curyvature on crack
interaction as seen through the SIFs. This problem has been
considered by Erdogan and Ratwani [73], by using the classical shell
theory. As with the single crack solution, the theory used here that
includes transverse shear deformations is better suited for this
problem.

The results presented in Figs. 5.1-4, show the effect of cylinder
radius on the stresses ahead of a single crack (both axial, Figs.
5.1,2, and circumferential, Figs. 5.3,4) of length a/h=1 subjected to
crack surface tension and bending loads. It is observed that although
the primary stresses are not considerably different from those of the
plate solution (R/h*®), the secondary values are now non-zero and
increase with decreasing radius. These effects would be magnified for

larger a/h. The results for axial cracks seem to be more sensitive to
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curvature in tension than for the circumferential crack and the
reverse is true for bending.

The out-of-plane displacement w(0+,y), or bulging of a single
crack has been examined in [28], and has been used as an
interpretation for the trends observed in the crack interaction
problem [73]. In Fig. 5.5 the tension and bending results for an
axially cracked cylinder with radius R/h=10 are presented for various
crack lengths. Fig. 5.6 gives the results for a circumferential
crack. In these plots the zero is fixed at y/a=0 in the deformed
state. Again it is observed that the axial crack has more complicated
behavior in tension, while the circumferential orientation shows a
similar trend in bending. For these loadings the w displacement in
the region ahead of the crack tip has more of a tendency to become
negative.

The symmetric double crack SIF solutions are presented in tables
5.1-8. The geometries are again the axially cracked cylinder, a/h=1
in 5.1 (tension) and 5.2 (bending), a/h=2 in 5.3 (tension) and 5.4
(bending), and the circumferentially cracked cylinder where these four
cases are repeated in tables 5.5-8. For both geometries the primary
stress intensity factor increases for decreasing radius in tension,
and decreases for decreasing radius in bending. Again the axial crack
is more sensitive to curvature than the circumferential crack in
tension and the circumferential crack is similarly more sensitive to
curvature in bending. The secondary SIFs decrease with increasing
cylinder radius except for the outer crack tip of the circumferential
crack, a/h=2 loaded in tension presented in Fig. 5.7. Also the
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secondary values have fluctuations for increasing separation. This
type of behavior was not observed with the primary SIFs as it was by
Erdogan and Ratwani [73]. It is possible that for larger a/h the
curvature effect is strong enough that there can be regions of
increase of the SIFs as the cracks get farther apart. The shortest
crack for which this trend was observed in Ref. [73] was a/h=2.5 for
R/h=5. Because of convergence difficulties and the shallow shell

assumption, longer cracks were not investigated.

5.4 Skew-Symmetric Loading, Modes 2,3

There are currently five unknowns in the problem, A(a), and Rj(a)
for j=1,2,3,4. The first step is to reduce this to three unknowns by

using the symmetry conditions,

N (0,y)

1}

o , (5.86)

M_(0,y) =0 . (5.87)

Then replace the remaining wunknowns with the crack surface

displacements,
g3(y) = u3(y) = w(xg)/h = w(0",x,)/h , (5.88)
g, = 1, (- 0/ 0, (3) = v0xg) /b= O/ M) 5xgm(xy) /b
= v(0",x5) /b= (hgy/N) Px (0", x,) /b7, (5.89)
u (1) = v(xg) = 8,0 + (/N yes(y) (5.90)
g5() = ug(y) = B (x) = B (0",x,) , (5.91)

where ui(y) are the crack opening displacements and gi(y) are the
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unknowns to be wused. The in-plane displacement component, i=4,
determines this, see Eqns. 5.57,58. If u, were used as an unknown the
resulting matrix would not be diagonally dominant and there may be
numerical problems. The equations that relate gi(y) to the original

unknowns are:

4
A@) = —2—— 5 (@®-vad)KR, | (5.92)
iec(1-v)r j=1 3
; &
i_—nglpjxjnj = qg(a) (5.93)
4
>R. =0 |, (5.94)
j=14
4
2
Zlijj = q,(a) , (5.95)
J:
4 .
_i
;é;RjKj(ﬁpj—l) = aQ3(a) ’ (5.96)
where

+00

q, (@) = -iaJ_mgk(t)aeiat

dt , k=3,4,5 . (5.97)
The solution to Eqns. 5.93-96 is

5. V4
> kik 034 (5.98)

@) = 2 Dy o

where D(a) is the same as Eqn. 5.71 and 7kj are as follows:
-i
131 = E{K3p3(P4"P2) + K4P4(?2'P3) + K2P2(P3‘P4)} ’

T390 = i‘{K3p3(p4—p1) + Ko (py-Pg) + Klpl(p3-p4)} )
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Ta3 = _%{szz(p4—p1) + K4p,(py-Pg) + Klpl(pz-p4)} ,

T34 = %{szz(p3—p1) + Kapa(py-py) + Klpl(pz-p3)} ,

T41 = {K3K4(p4‘p3) + KKy (pyopy) + K2K3(P3‘P2)} ’

Tao = {KsKe(0gPy) + KKy (pypp) + KiKg(pgopp))

T43 = {K4K2(P4'p2) + KiKy(py-py) + K2K1(P2‘91)} ’

Taq = '{K3K2(p3‘P2) + K K3(py-pg) + K2K1(p2'p1)} '

Tsy = - (1) {K, (5p,-1) (p5-Py) *Kg (5p5-1) (pyp,) *Ky (8D51) (PyP3) )
Tgo = (l-V){K4(ﬁp4-1)(p3-p1)+K3(ﬁpg-1)(pl-p4)+K1(~p1—l)(p4-p3)},

T3 = ~(1~V){K4(&p4-1)(p2~p1)+K2(ﬁp2—1)(pl-p4)+K1(&pl-1)(p4—92)},

754 = (I'V){K3(ﬁp3‘1)(Pz‘p1)+K2(ﬁp2_1)(pl_P3)*K1(5P1—1)(p3'p2)} .

(5.99)
The following mixed boundary conditions will produce three singular

integral equations for the determination of the crack opening

displacements:
+ .
Vx(O Y) = _fs(Y) » Y 1n Ln ’ (5.100)
g3(y) = W(0+,y) =0 , y outside of Ln , (5.101)
N,© ) =-f,(0 , yinL_ (5.102)

84(y)=V(0+,y)-(kg/X)zyW(0+,y) =0 , y outside of L , (5.103)
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M (0%y) = f5(y) , yink (5.104)

g5 (y) = py(o*,y) =0 , youtside of L . (5.105)

See Egn. 5.77 for the definition of Ln' Eqns. 5.100,102,104 with

5.48,53,54,92 become:

. 4
1 1lim +w{ -1 2 2 rx
-f = 57 SUZEY .~ K.R.
3()7) o1 x40 . r(l_u)jgl(m] va®) j Je +
4 mXy s
+ &y _m.p.K.R.(a)e 3 } e ** da , (5.106)
j=1 171 )
i linm (& BX _jay
-f,0) = 27 x40 a, ijj(a)e e da |, (5.107)
—-00 J::l
4 . +0 ., 4 rx, 2 2
-2\ _ 1+v lim { -e " (a”+r 2 2,
1750 =2 xe0 ) ;E;Kjkj far (1) (85702)
- 2iom;e j ]} e Y gg . (5.108)

After asymptotic analysis, see section J.3 of Appendix J, these three
equations may be expressed as,

g4(t)
t-y

1 &M 2[1,2 2, 1,2] 1
3 = 3 % g dt + [8(x2_x1)— 2*2] x ;L de
n

L (t-y)

n

- (833 4 oym23Y) L ILln|t~ylg3(t)dt R

A 4
- ILngs(t) IO{B%%SEE;Kj[1“735*(x2/x)274j]x

- (m?—uaz)
X[——;%Ij;y— + ﬁmjpj] + a} cosa(t-y) da dt +
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—(m?—vaz)

A 4
* % JL g4 (%) Jo{ﬁ%57§§;K574j[ r(1-v) ”mjpj] )
n

2. 1,2]) _.
- szlé(kg—xl)- Exz]} sina(t-y) da dt +

2 2
A 4 - (m%-va®™)
1 a —1 7 i -
oy JL g5(t)J0D(a)§§;Kj75j[ T (1) + Lmjpj] sina(t-y) da dt +

=]

+ % JL 83(t’) T33(t’Y) dt + % IL g4(t) i34(t,y) dt +
* % IL g5 (t) Igp(t,y) dt (5.109)
1 g4(t) AT 1 &W
-1, = 5 §L on)? [ ] { ty 4t
n Il

44 1 45 1 .
- JLlnlt—ylg4(t)dt - JLlnlt—ylgs(t)dt .

n n

3n2,)\2

L1 g3(t)j (e éij [1a73 -0V 743] [ zx2l]}sina(t—y)dadt .

L

+ lJ g4(t) J { é 74j + %} cosa(t-y) da dt +

Il

4
. L J gs(t)J D(a) Zm '15 cosa(t-y) da dt +

1 jL g5(t) T,q(t,y) dt + 1 j gy (t) T,,(t,y) dt +
n n

.1 JL g5(t) I,g(t,y) dt (5.110)
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2x4 1.y [ 85(8)
(y) = T ‘—“—2 dt +
L (t-y)
4L [ nieyig 0de - 22 L [ nieylg (e)at -
Fi s L AR ALY 1 7)) yigg
n n

L1 JL gs(t)J { j{:K [1a73 (XZ/X) 143 ]

n

2.2
2 2 .
[E%T%§;j(mj—ua )—2amj]}s1na(t—y)dadt +

2 2
+ 1 J g4(t) I :E:K 74J[a:(;rv)(m -va ) 2amJ] cosa(t-y) da dt +

o2er?
3, s fotar e ety o e

+ a(l+v)} cosa(t-y) da dt +

1 IL 830 Tgg(tn) v+ 1 [ g, () Tygtey) de

n n

.1 jL g (1) T (t,y) dt (5.111)

n

5.5 Skew-Symmetric Loading, Mode 2 and 3, results.

The results for the interaction of two equal length (a/h=1)
cracks 1in a cylinder are presented in tables 5.9-11 (axial) and 5.12-
14 (circumferential). The three possible loadings, in-plane shear,
twisting, and out-of-plane shear are included. The effect of

curvature is not as strong as for the symmetric problem of Sec. 5.3.
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Also the difference between the axial and the circumferential crack is
minimal, especially for twisting, see tables 5.10,13. Both primary
and secondary values of the SIFs change very little. The only trends
that can be observed with respect to curvature are the mode 3
component of the SIF for in-plane shear loading is greater for the
circumferential crack, see tables 5.9,12, and for out-of-plane shear
there is a notable difference in the in-plane shear component of the

SIF, again greater for the circumferential crack, 5.11,14.
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Table 5.1 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to membrane
loading. The inner and outer crack tips are
located at y/a=tb, #c respectively where a/h=(c-
b) /(2h)=1, alsz/h, v=.3, M*Nx, B*Mx.

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 1 @
R/h
5 2.074 1.63¢ 1.431 1.318 1.265 1.158
ky(b) 10  1.889 1.489 1.299 1.188 1.139 1.081
20 1.825 1.439 1.252 1.139 1.082 1.041
oda’ 50 1.802 1.420 1.234 1.118 1.056 1.016
+w  1.795 1.414 1.229 1.112 1.048 1.000
5 1.392 1.341 1.304 1.274 1.244 1.158
ky(c) 10  1.241 1.199 1.169 1.144 1.128 1.081
—— 20 1.182 1.143 1.113 1.087 1.069 1.041
Ja 50 1.158 1.119 1.089 1.060 1.039 1.016
+»  1.115 1.112 1.081 1.052 1.028 1.000
5 248 169  .124  .093  .084  .103
kg(b) 10 192 136 .103  .076  .060 .07l
20 139 .100  .077  .058  .045  .046
o da 50 .081  .060 .047  .037  .028  .025
o .000  .000 .000 .000  .000  .000
5 106 .096 .089  .087  .093  .103
g(e) 10 .087  .076 .068  .061 .05  .071
20 .068  .059  .052  .045  .040  .046
o la 50 .043  .038  .033  .029  .025 .025
+ .000  .000 .000 .000  .000  .000
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Table 5.2 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to bending. The
inner and outer crack tips are located at y/a=:h,

*c respectively where a/h=(c-b)/(2h)=1, 02:6Mx/h s
v=.3, M°N_, B+M_.
X X
BENDING

b/a 0.05 0.125 0.25 0.5 1 40

R/h
5 1.205 1.006 .902 .824 771 .725
kg(b) 10  1.240 1.033 .924 .841 .783 .735
20  1.262 1.051 .939 .853 .791 .740
02I§7 50 1.279 1.064 .950 .862 .798 .745
40  1.204 1.076 .960 .870 .805 .747
5 .828 .809 .790 .770 .751 .725
kg(e) 10 .847 .825 .804 .781 .761 .735
20 .860 .837 .815 .790 .768 .740
a2IZ“ 50 .870 .846 .823 .797 .774 .747
+00 .880 .855 .831 .805 .780 .747
5 .089 .069 .060 .055 .049 .033
ky(b) 10 .048 .038 .033 .031 .030 .022
20 .025 .020 .018 .017 .018 .014
0212" 50 .011 .008 .008 .007 .008 .007
+o0 .000 .000 .000 .000 .000 .000
5 .063 .059 .055 .051 .045 .033
ky(c) 10 .036 .034 .033 .031 .030 .022
20 .020 .019 .018 .018 .018 .014
o da’ 50 .009 .008 .008 .008 .008 .007
+00 .000 .000 .000 .000 .000 .000
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Table 5.3 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to membrane
loading. The inner and outer crack tips are
located at y/a=tb, #c respectively where a/h=(c-
b) /(2h)=2, alsz/h, v=.3, M*Nx, B+Mx.

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 1 +o
R/h

5 3.904 2.924 2.464 2.117 1.779 1.480
ky(b) 10  2.442 1.917 1.683 1.553 1.456 1.267
—— 20 2.019 1.593 1.397 1.200 1.245 1.144
(Ja’ 50  1.850 1.459 1.272 1.161 1.109 1.033
s 1,795 1.414 1.229 1.112 1.048 1.000
5 2.553 2.305 2.109 1.889 1.668 1.480
y(c) 10 1.674 1.596 1.539 1.480 1.401 1.267
20 1.359 1.311 1.278 1.251 1.227 1.144
oda 50 1.208 1.168 1.139 1.114 1.099 1.033
s 1,115 1.112 1.081 1.052 1.028 1.000
5 371 .206 .140  .140  .175  .166
) 10 .305  .196  .136  .107  .118  .135
20 .251  .170  .122  .088  .080  .099
2= 50 176 .124  .092  .0867  .051  .059
o .000 .000 .000 .000 .000  .000
5 197,189  .189  .193  .188  .166
kg(c) 10 130 .122 .121 .127  .139  .135
2= 2 103 .092 .085  .082 .08  .099
50 .078  .068 .060  .052  .049  .059
00 .000 .000 .000 .000 .000  .000
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Table 5.4 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to bending. The
inner and outer crack tips are located at y/a=*5,

+c respectively where a/h=(c-b)/(2h)=2, 02=6Mx/h ,
v=.3, M*N_, B=M_.
X X
BENDING
b/a 0.05 0.125 0.25 0.5 1 +o
R/h
5 1.111 .922 .812 .735 .690 .648
kg(b) 10  1.167 .966 .846 757 .708 .668
20 1.211 1.000 .872 .776 .721 .681
aQIE“ 50 1.250 1.030 .896 .793 .733 .681
0 1.291 1.060 .920 .813 .748 .700
5 .745 .726 .709 .690 .673 .648
kg(c) 10 .768 .747 .727 .708 .692 .668
—=— 20 .789 .765 .743 .721 .704 .681
azIS“ 50 .809 .782 .758 .733 .713 .691
40 .833 .803 .776 .749 .726 .700
5 .321 .224 173 .128 .086 .059
ky(b) 10 .148 111 .093 .079 .063 .042
20 .079 .060 .052 .047 .042 .029
aZIZ“ 50 .035 .027 .024 .022 .022 .016
+o0 .000 .000 .000 .000 .000 .000
5 .190 .158 .130 .100 .075 .059
ky(c) 10 .098 .088 .079 .068 .055 .042
20 .056 .052 .048 .044 .039 .029
02IZ“ 50 .026 .025 .024 .023 .022 .016
40 .000 .000 .000 .000 .000 .000
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Table 5.5 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=tb, #c respectively where

a/b=(c-b)/(2h)=1, o;=N /h, v=.3, >N , B+M_.

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 1 +®
R/h

5 1.827 1.440 1.252 1.138 1.079 1.036
y(® 10 1.806 1.423 1.237 1.121 1.059 1.018
—— 20 1.798 1.417 1.231 1.115 1.052 1.009
50 1.796 1.415 1.229 1.113 1.049 1.003
0 1.795 1.414 1.229 1.112 1.048 1.000
5 1.182 1.142 1.111 1.083 1.064 1.036
y(¢) 10 1.162 1.122 1.091 1.063 1.041 1.018
20 1.154 1.115 1.084 1.055 1.033 1.009
o, {a 50 1.152 1.113 1.082 1.052 1.029 1.003
0 1.115 1.112 1.081 1.052 1.028 1.000
5 .200 .143  .110 .081 .062 .076
kg(b) 10 .154 .113  .088 .068 .051 .052
—— 20 .107 .079  .063 .050 .038 .033
50 .058 .044  .035 .028 .022 .018
+00 .000 .000  .000 .000 .000 .000
5 .086 077  .069 .061 .057 .076
kg(c) 10 .076 .067  .059 .051 .044 .052
= 20 .056 .050  .044 .038 .033 .033
50 .033 .029  .026 .023 .020  .018
+00 .000 .000  .000 .000 .000  .000
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Table 5.6 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
bending. The inner and outer crack tips are
located at y/a=*b, #c respectively where a/h=(c-

_ _ 2
b)/(2h)=1, 0,=6M _/b*, v=.3, MsN_, BoM_.

BENDING
b/a 0.05 0.125 0.25 0.5 1 +00
R/h

5 1.013 .854 .773 .713 .676 .675

) 10 1.125 .942 .847 775 .725 .707

20 1.199 1.001 .897 .816 .759 .725
Ja~ 50 1.253 1.043 .932 .846 .785 .740
s®  1.204 1.076 .960 .870 .805 .747

5 .704 .693 .683 .673 .667 .675

g(c) 10 .770 .755 .739 .722 .708 .707
20 .817 .798 .778 757 .738 725
ia 50 .852 .830 .808 .783 .761 .740
40 .880 .855 .831 .805 .780 .747

5 .042 .033 .030 .029 .030 .024

ky(b) 10 .024 .019 .017 .017 .018 .016
20 .013 .010 .009 .009 .010 .010

fa~ 50 .006 .004 .004 .004 .004 .005
+0 .000 .000 .000 .000 .000 .000

5 .032 .031 .030 .030 .030 .024

y(c) 10 .019 .018 .018 .018 .018 .016
—— 20 .011 .010 .010 .010 .011 .010
a 50 .005 .004 .004 .004 .005 .005

40 .000 .000 .000 .000 .000 .000
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Table 5.7 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
membrane loading. The inmner and outer crack tips
are located at y/a=tb, #c respectively where
a/h=(c-b) /(2h)=2, 01=Nx/h, v=.3, M*Nx, B+Mx.

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 1 +o

R/h
5 1.992 1.569 1.372 1.261 1.211 1.124
b) 10 1.868 1.472 1.283 1.171 1.118 1.066
20 1.821 1.435 1.248 1.134 1.075 1.034
o,da- 50 1.801 1.419 1.234 1.118 1.055 1.014
s 1.795 1.414 1.229 1.112 1.048 1.000
5 1.325 1.278 1.244 1.216 1.193 1.124
ky(e) 10 1.221 1.180 1.149 1.123 1.106 1.066
—— 20 1.177 1.138 1.107 1.080 1.061 1.034
2 50 1.157 1.118 1.087 1.058 1.037 1.014
s 1.115 1.112 1.081 1.052 1.028 1.000
5 212 .133  .084  .055  .061  .112
kg(b) 10 .236  .163  .117  .081  .065  .099
- 20 .207  .148  .110  .080  .060  .073
a 50 140 .102  .078  .059  .045  .043
+ .000 .000 .000 .000  .000  .00O
5 .056  .058  .062  .073  .093  .112
kp(c) 10 .082  .075 .070  .067  .072 -.099
20 .087  .077  .068  .060  .056  .073
o da 50 .068  .060 .053  .045  .039  .043
» .000 .000 .000 .000 .000 .000
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Table 5.8 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
bending. The inner and outer crack tips are
located at y/a=#b, #c respectively where a/h=(c-

- - P
b)/(2h)=2, 02—6Mx/h , v=.3, M+Nx, B-'Mx.

BENDING

b/a 0.05 0.125  0.25 0.5 1 +%

R/h
5 .714 .612 .555 .520 .516 .530
b) 10 .884 .746 .665 .607 .583 .593
20 1.030 .860 .758 .681 .641 .637
oda 50 1.163 .963 .841 .748 .694 .673
40 1.291 1.060 .920 .813 .748 .747
5 .517 .516 .517 .519 .525 .530
kg(c) 10 .599 .592 .587 .583 .584 .593
20 .677 .664 .651 .639 .632 .637
o.da 50 .754 .733 .713 .693 .677 .673
400 .833 .803 .776 .749 .726 .747
5 .091 .072 .063 .059 .053 .038
ky(b) 10 .061 .048 .043 .041 .040 .029
20 .038 .030 .026 .025 .026 .021
{a- 50 .018 .014 .012 .012 .013 .012
+m0 .000 .000 .000 .000 .000 .000
5 .063 .060 .057 .053 .048 .038
ky(e) 10 .045 .043 .041 .040 .038 .029
20 .029 .028 .027 .026 .026 .021
o da 50 .014 .013 .013 .013 .013 .012
+0 .000 .000 .000 .000 .000 .000
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Table 5.9 Modes 2&3 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to in-plane

shear. The inner and outer crack tips are located

at y/a=tb, *c respectively where a/h=(c-b)/(2h)=1,
—N /h v=.3, I*N M+M , 0+Vx

IN-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +o0
R/h

5 1.912 1.495 1.290 1.159 1.082 1.031
kor(b) 10  1.860 1.460 1.265 1.141 1.069 1.016
—£— 20 1.829 1.439 1.249 1.128 1.061 1.008
a 50 1.809 1.425 1.237 1.120 1.054 1.003
s 1.795 1.414 1.229 1.112 1.048 1.000
5 1.208 1.161 1.123 1.087 1.058 1.031
or(c) 10 1.186 1.142 1.107 1.074 1.046 1.016
—<>— 20 1.171 1.129 1.096 1.065 1.039 1.008
g2 50 1.160 1.120 1.088 1.058 1.033 1.003
o  1.115 1.112 1.081 1.052 1.028 1.000
5 -.068 -.044 -.030 -.019 -.014 -.020
kop(b) 10  -.049 -.034 -.025 -.018 -.013 -.014
20 -.032 -.023 -.018 -.013 -.010 -.009
oda 50 -.017 -.013 -.010 -.008 -.006 -.005
+0 .000 .000 .000 .000 .000 .000
5 -.006 -.008 -.009 -.012 -.014 -.020
kop(c) 10  -.008 -.009 -.009 -.009 -.010 -.014
-4 20 -.008 -.008 -.008 -.008 -.007 -.008
Ja 50  -.006 -.006 -.005 -.005 ~-.005 -.005
+00 .000 .000  .000 .000 .000 .000
5 -.008 -.017 -.028 -.039 -.047 -.050
gp(®) 10 -.002 -.007 -.012 -.018 -.022 -.026
20 -.001 -.003 -.006 -.008 -.011 -.0l14
oda 50 -.000 -.001 -.002 -.003 -.004 -.006
+o0 .000 .000  .000 .000 .000 .000
5 .090 .078  .068 .059 .052  .050
3p(c) 10 .051 .045  .039 .034 .029 .026
= 90 .028 .024  .022 .019 .016 .014
Ja 50 .012 .011 .009 .008 .007 .006
+o0 000 000  .000 000 000 .000
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Table 5.10 Modes 2&3 normalized stress intensity

factors for symmetric collinear axial cracks in a

cylinder of radius R/h subjected to twisting. The
inner and outer crack tips are located at y/a=*§,
*c respectively where a/h=(c-b)/(2h)=1, 05=6Mxy/h

’

v=.3, IsN_, T+M__, 0+V .
Xy Xy X
TWISTING

b/a 0.05 0.125 0.25 0.5 1 +

R/h
5 .666 .576 .537 .519 .516 .519
kop(b) 10 .670 .579 .540 .521 .517 .520
20 .672 .581 .541 .522 .518 .521
la~ 50 .674 .582 .542 .523 .519 .521
+o .675 .583 .543 .524 .519 .522
5 .503 .505 .509 .512 .516 .519
gp(c) 10 .504 .506 .509 .513 .517 .520
—<>— 20 .504 .507 .510 .514 .517 .521
ga 50 .505 .507 .510 .514 .518 .521
+o0 .506 .508 .511 .515 .518 .522
5 -.019 -.013 -.010 -.007 -.006 ~-.007
or(k) 10 -.014 -.010 -.007 -.005 -.004 -.005
20 -.009 -.006 -.005 -.004 -.003 -.003
oda’ 50 -.005 -.004 -.003 -.002 -.002 -.002
+u0 .000 .000 .000 .000 .000 .000
5 -.006 -.006 -.006 -.006 -.006 -.007
or(c) 10 -.005 -.005 -.004 -.004 -.004 -.005
—==—— 20 -.004 -.004 -.003 -.003 -.003 -.003
gla 50  -.002 -.002 -.002 -.002 -.002 -.002
+ .000 .000 .000 .000 .000 .000
5  -.004 .007 .025 .047 .062 .069
30(b) 10  -.005 .006 .024 .047 .062 .069
20 -.005 .005 .024 .046 .062 .070
o.da 50 -.005 .005 .023 .046 .062 .070
s _~.005 .005 .023 .046 .062 .070
5 -.100 -.092 -.085 -.077 -.071 -.069
3g(c) 10 -.102 -.094 -.086 -.078 -.072 -.069
—~—~—— 20 -.103 -.085 -.087 -.079 -.073 -.070
a 50 -.103 -.096 -.088 -.079 -.073 -.070
s _-.104 -.096 -.088 -.079 -.073 -.070
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Table 5.11 Modes 2£3 normalized stress intensity
factors for symmetric collinear axial cracks in a

cy
sh
at

linder of radius R/h subjected to out-of-plane
ear. The inner and outer crack tips are located
y/a=tb, #*c respectively where a/h=(c-b)/(2h)=1,

—3V /(2h), v=.3, I*N T+M ¥’ O*Vx

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +

R/h
5 2.876 2.103 1.797 1.682 1.665 1.661
kgg(b) 10 2.897 2.116 1.806 1.689 1.672 1.671
20 2.905 2.121 1.810 1.692 1.675 1.674
asIZ" 50 2.908 2.123 1.812 1.694 1.676 1.676
+w 2,909 2.124 1.812 1.694 1.677 1.676
5 1.748 1.689 1.664 1.658 1.661 1.661
kgg(c) 10 1.757 1.687 1.671 1.665 1.669 1.671
20 1.761 1.701 1.674 1.667 1.671 1.674
ogla 50  1.762 1.702 1.675 1.668 1.672 1.676
o  1.763 1.702 1.675 1.669 1.673 1.676
5 .016 .024  .031 .040 .049 .053
kop(b) 10 .008 .011 .014 .019 .024 .028
20 .004 .005  .007 .009 .011 .014
031‘-: 50 .001 .002 .003 .003 .004 .006
+e0 .000  .000 .000  .000 .000  .000
5 -.075 -.067 -.062 -.057 -.054 -.053
kor(c) 10 -.042 -.038 -.034 -.032 -.020 -.028
20 -.023 -.020 -.019 -.017 -.016 -.014
ogda’ 50 -.009 -.008 -.008 -.007 -.007 -.006
+%0 .000 .000  .000 .000 .000  .000
5 -.074 -.155 -.251 -.358 -.429 -.455
kop(b) 10 -.074 -.155 -.251 -.359 -.433 -.462
20 -.074 -.155 -.251 -.360 -.433 -.465
oBIE“ 50 -.074 -.155 -.251 -.360 -.433 -.465
s _ 074 -.155 -.251 -.360 -.433 -.466
5 .568  .518  .489 .471 .462 .455
kop(c) 10 .580  .528  .498 .479 .469 .462
20 .585  .532  .502 .482 .472 .465
ogla’ 50 .587 .534°  .503 .484 .473 .465
+ .588 .535  .504 .484 .474 .466
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Table 5.12 Modes 2£&3 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
in-plane shear. The inner and outer crack tips are
located at y/a=*b, 2c respectively where a/h=(c-
b)/(2h)=1, 04=N /h, v=.3, I+N_ , T-M__ , 0+V_.

Xy Xy Xy X

IN-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +
R/h

5 1.979 1.539 1.322 1.182 1.098 1.036
kyy(b) 10  1.880 1.474 1.275 1.149 1.077 1.018
20 1.835 1.443 1.252 1.131 1.064 1.009
fa~ 50 1.810 1.425 1.238 1.120 1.055 1.003
s 1.795 1.414 1.229 1.112 1.048 1.000
5 1.223 1.174 1.135 1.098 1.066 1.036
o(c) 10 1.192 1.148 1.113 1.079 1.051 1.018
42— 20 1.173 1.132 1.099 1.067 1.042 1.009
a 50 1.160 1.120 1.089 1.058 1.034 1.003
s 1,115 1.112 1.081 1.052 1.028 1.000
5 -.142 -.093 -.063 -.040 -.025 -.025
kop(b) 10 -.089 -.061 -.044 -.031 -.021 -.017
20 -.053 -.037 -.028 -.021 -.015 -.01l
oda 50 -.025 -.018 -.014 -.011 -.009 -.006
+% .000 .000 .000 .000  .000  .000
5 .013  .007 .001 -.004 -.011 ~-.025
kyp(c) 10 -.001 -.003 -.005 -.007 -.009 ~-.017
<1 920 -.005 -.006 -.007 -.007 -.007 -.011
a 50 -.005 -.005 -.005 -.005 -.005 -.006
+% .000 .000 .000 .000  .000  .000
5 -.018 -.041 -.067 -.098 -.125 -.150
ap(®) 10 -.005 -.015 -.028 -.043 -.057 -.075
20 -.002 -.006 ~-.013 -.020 -.027 -.038
fa= 50 -.000 -.002 -.005 ~-.008 -.011 -.015
00 .000 .000 .000 .000  .000  .000
5 .206  .260  .230  .199  .173  .150
30(c) 10 .156  .138  .122  .107  .093  .075
—=— 20 .080 .071  .063  .056  .049  .038
a 50 .033  .029 .026  .023  .020  .015
+% .000 .000 .000 .000 .000  .00O
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Table 5.13 Modes 2&3 norpalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
twisting. The inner and outer crack tips are
located at y/a=tb, #c respectively where a/h=(c-
b)/(2h)=1, 05=6Mxy/h2, v=3, DN, MU, 04V

X

TWISTING
b/a 0.05 0.125 0.25 0.5 1 400
R/h

5 .665 .574  .535 .517 .514 .519
kop(b) 10 .8670 .578 .539 .520 .516 .520
20 .672 .580  .541 .522 .518 .521
Ja~ 50 .674 .582 .542 .523 .518 .521
+00 .875 .583  .543 .524 .519 .522
5 .502 .505  .508 .512 .516 .519
op(e) 10 .503 .506  .509 .513 .516 .520
< 20 .504 .507  .510 .513 517 .521
gla 50 .505 .507  .510 .514 .517 .521
+0 .506 .508  .511 .515 .518 .522
5 -.035 -.023 -.017 -.011 -.008 .010
or(b) 10 -.022 -.015 -.011 -.008 -.006 .006
20 -.014 -.010 -.007 -.005 -.004 .004
o.da’ 50 -.007 -.005 -.004 -.003 -.002 .002
+0 .000 .000  .000 .000 .000 .000
5 -.009 -.008 -.008 -.007 -.007 .010
or(c) 10 -.007 -.006 -.006 -.005 -.005 .006
—==—— 20 -.005 -.004 -.004 -.004 -.004 .004
gia2 50  -.003 -.002 -.002 -.002 -.002 .002
+0 .000 .000  .000 .000 .000 .000
5  -.003 .009 .028 .050 .065 .069
30(®) 10 -.004 .006  .025 .047 .063 .070
—~=— 20 -.005 .006 .024 .047 .062 .070
a 50  -.005 .005 .023 .046 .062 .070
@ - 005 .005 .023 .046 .062 .070
5 -.098 -.090 -.083 -.075 -.070 .069
gp(c) 10 -.102 -.094 -.086 -.077 -.072 .070
20 -.103 -.095 -.087 -.078 -.073 .070
la 50 -.103 -.096 -.088 -.079 -.073 .070
0  _-.104 -.096 -.088 -.079 -.073 .070

203



Table 5.14 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
out-of-plane shear. The inner and outer crack tips
are located at y/a=*b, #c respectively where
a/h=(c-b)/(2h)=1, a3=3Vx/(2h), v=.3, I+ny, T*Mxy,

0+V_.
X

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +o
R/h

5 2.565 1.897 1.632 1.537 1.532 1.547
kyg(b) 10  2.793 2.047 1.751 1.641 1.628 1.635
20 2.873 2.100 1.793 1.678 1.661 1.664
Ja~ 50 2.902 2.119 1.809 1.691 1.673 1.674
s  2.909 2.124 1.182 1.694 1.677 1.676
5 1.561 1.526 1.514 1.518 1.532 1.547
go(c) 10 1.694 1.643 1.621 1.618 1.626 1.635
= __ 90 1.742 1.684 1.659 1.653 1.658 1.664
a 50 1.759 1.699 1.672 1.666 1.670 1.674
+0  1.763 1.702 1.675 1.669 1.673 1.676
5 .040 .058 .076 .099 .124 .152
o1(®) 10 .021 .030 .039 .050 .063 .081
20 .010 .015 .019 .025 .031 .042
ia. 50 .004 .006 .008 .010 .012 .017
+0 .000 .000 .000 .000 .000 .000
5 -.222 -.201 -.187 -.176 -.164 -.152
k() 10 -.127 -.114 -.106 -.099 -.093 -.081
<2~ 90 -.087 -.060 -.056 -.052 -.049 -.042
la~ 50 -.027 -.025 -.023 -.022 -.020 -.017
+o0 .000 .000 .000 .000 .000 .000
5 -.067 -.141 -.230 -.331 -.400 -.422
op(®) 10 -.071 -.151 -.244 -.350 -.423 -.452
20 -.073 -.154 -.249 -.357 -.430 -.462
Ja. 50 -.074 -.155 -.251 -.358 -.433 -.465
s -.074 -.155 -.251 -.360 -.433 -.466
5 .500 .460 .437 .424 .418 .422
op(c) 10 .557 .509 .480 .463 .454 .452
~£2__ 90 .578 .526 .496 477 .467 .462
a 50 .586 .533 .502 .483 .472 .465
+o0 .588 .535 .504 .484 .474 .466
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Figure 5.1 Stresses ahead of an axial crack

(a/h=1) in a cylinder subjected to membrane
loading, v=.3.
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Figure 5.2 Stresses ahead of an axial crack
(a/h=1) in a cylinder subjected to bending. The
dashed line corresponds to R/h+w, v=.3.
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Figure 5.3 Stresses ahead of a circumferential

crack (a/h=1) in a cylinder subjected to membrane
loading, v=.3.
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Figure 5.4 Stresses ahead of a circumferential
crack (a/h=1) in a cylinder subjected to bending,
v=.3.
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Figure 5.5 Out-of-plane displacement w(0',y) as
measured from y=0 in the deformed position for a
cylinder with an axial crack subjected to either

membrane loading (am:ﬁx/h) or bending (0b=6ﬂx/h2),
v=.3.
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Figure 5.6 Out-of-plane displacement w(0',y) as
measured from y=0 in the deformed position for a
cylinder with a circumferential crack subjected to

either membrane loading (am=ﬁx/h) or bending

(abzsﬁ/hz), v=.3.
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CHAPTER 6

Part-Through Cracks in Shells

The singular integral equations for part-through crack problems
are obtained directly from the corresponding through crack equations
given in Chapter 5. The compliance relations of Chapter 2 and
Appendix C are used even though they correspond to the strip solution
which does not take into account shell curvature. The plane strain
problem for an edge cracked cylinder [74], and the axisymmetric case
of a circumferentially cracked cylinder [75], could be used to obtain
these coefficients, but there are convergence problems for shell-like
geometries, and also a different set of constants would be required
for each curvature. Since the assumption of shallowness has already
been applied, neglect of this curvature effect should not be too
significant, see [60]. The line-spring model solutions are normalized
with respect to the edge crack solution as explained in section C.4 of
Appendix C. Perhaps if the solution is considered to be normalized
with respect to the actual "long crack” shell solution instead of the
plane strain strip value, the accuracy of the result will improve.
This idea is similar to what happens when a compliance curve that is
not too accurate is used. The resulting ratio is more accurate than
the actual value of the SIF.

There are some basic differences between plate and shell problems
besides the mathematical complication that shell curvature introduces.

In a plate, loading at "infinity" for any of the five loads of temsion
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(Nxx)’ bending (Mxx)’ out-of-plane shear (Vx), in-plane shear (ny),
and twisting (Mxy), results in an "uncracked" solution that is
constant  throughout the plate. Therefore, in the perturbation
problem, the solution to the various loading cases is obtained by
simply applying the negative of these loads to the crack surfaces.
The process of determining the perturbation loads in shells for a
given external loading is not as easy. In a cylinder, for example,
any loading at infinity can result only in membrane or in-plane shear
at the crack region, (excluéing minor secondary contributions). The
loading cases of bending, out-of-plane shear and twisting become
important when an external force is applied near the crack region. To
make use of the various shell solutions, the solution to the shell
without a crack must first be obtained. This will in general require
numerical techniques.

With the present formulation the surface crack can lie along any
principal line of constant curvature of a shell. This uncouples the
symmetric mode 1 loading, from the skew-symmetric loading that couples
modes 2 and 3. If the crack were positioned at an arbitrary angle,
then all three fracture modes interact, see [30]. The most practical
problem represented here would be a mode 1 contribution resulting from
torsion of a cylinder.

The different geometries that are considered include the sphere,
cylinder and circular pipe elbow, which is represented by a toroidal
shell. Also the crack may lie on the outside or inside of the shell

by imposing positive or negative curvature, respectively. The
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emphasis in the results will be the effect of curvature on the SIF at

the maximum penetration point of a semi-elliptical surface crack.

6.1 Mode 1.
From Eqns. 5.84,85, 2.31, and from the superposition of Fig. C.1,
the integral equations for the symmetrically loaded part-through crack

are found to be:

b u,(t)
%)( —1— 4t +—}:j u (1)K, (2) dt
a (t-y)
- 711“1()') - 712“2(Y) = ‘Nx = “31 ) (6.1)
t
(L ) )( ") 5 dt + -Zj u (6)K, 5 (2) db
X 27 a (t- y)
- 11991 () - Toeu(y) = M= -5,/8 (6.2)

where the kernels may be obtained from Eqns. 5.84,85 and Appendix J.
The LSM for inner surface cracks in a pressurized cylinder is compared
to solutions from Raju and Newman [34] in Fig. 6.1, and to solutions
from 0’Donoghue et. al. [40] in Fig. 6.2. The only case where
agreement is poor 1is for the semi-circular crack with a/h=Lo/h=.2,
which is a rather severe geometry for the model. Outward bulging of
the shell surface along the line of the crack is presented in Fig. 6.3
for an outer circumferential crack in a cylinder. Fig. 6.4 shows the
inner crack case where the bulging is inward. The tension case of 6.4
shows that the depression does not always increase as the crack gets

deeper (i.e. increasing Lo/h) because of the tendency of the crack to
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bulge outward when there is no net ligament. The net ligament causes
a bending component that forces the surface inward and these two
effects oppose each other. Therefore it would be difficult to predict
crack depth by a measurement from the back surface.

To date, as far as I know, the LSM has only been applied to
cracked cylinders, see for example [49,60]. 1In tables 6.1-5 the
solution to the spherical shell is presented for both inner and outer
cracks of varying depths and lengths. It is noted that the results
are sensitive to curvature. Also for a given geometry the SIFs are
higher for the external crack than for the internal crack. In table
6.6 the SIF distribution along the contour of a semi-elliptical crack
located at different positions in a toroidal shell is presented. The
four locations, denoted A through D, are shown in Fig. 6.5. Also the
crack may be internal or external, making a total of eight cases that
are given in this table, and in the tables that follow. It is noted
that the functional behavior of the SIF does not vary much from
position to position. This supports giving only the value of the SIF
at the center of the crack. Therefore, the plate results may be used
to get an idea about this distribution given the crack size and
maximum penetration value. These results are given in Chapter 4 for a
wide range of crack lengths and depths. The toroidal shell results
for mode 1 1loading are presented in tables 6.7-22. In these tables
the cylinder radius to shell thickness ratio is held constant at
R/h=10. The main parameter study is the elbow curvature given by

Ri/R’ see Fig. 6.5. Values of crack length to shell thickness (a/h),
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of .5, 1., 2., 4., are used. As expected, the longer the crack, the
more the influence of elbow curvature. The results given in the
tables are for constant crack surface membrane and bending loads. It
should be noted that in order to obtain the solution to the practical
case of an internally pressurized toroidal shell, or to any other
external loading, the uncracked shell solution must first be obtained.
In general this solution will not be constant over the length of the
crack. This is not a concern with either the sphere or cylinder
because the uncracked solution is constant due to symmetry. However,
it 1is most likely the case that the variation is not considerable and
that the results in the tables may be directly applied once the actual

crack surface loading is determined.

6.2 Modes 2 and 3

From Eqns. 5.109-111, 2.31, and from the superposition of Fig.
C.1, the integral equations for the skew-symmetrically loaded part-
through crack may be expressed as:

_1_ %b g3 (t')
LR t—y)2

1,2] 1 J( g4(t)
272 L t-y
n

at + m2[2023)-
(

+l>5:Ib (£)K;5(2) dt - 13au,(y) = V= -8(1+) /50, , (6.3)
N St T33%31¥) = ¥y 3 &

b g,(t) 5 b
= { ~dt %E_jj g; (K, (z) dt
a (t-y) i=3"a
" Tag¥g ) - 1) = N =5, (6.4)
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(- 2) ;b gs(t) [3* **1] f Ga(t)

\or (t-y)2
13 g ®
;;J 8 (VK;5(2) dt - P50, () - Ygpus () = A = Fese
(6.5)
vwhere,
g3(¥) = w(0',y) = u(y) , (6.6)
g, =y (0", 1)-02/M3m(0",y) = 0, (1-0ZM Fyu(y) (6.7)
u, () = g4 + 02N ygs() (5.8)
85() = A,(0",y) = us(y) - (6.9)

The Fredholm kernels may be obtained from Chapter 5 and Appendix J.

Because of the assumption made in Eqn. 2.12 (see Eqn. 6.10)
concerning self-similar crack growth under mode 2 loading, solutions
to these equations apply only to cases where crack growth is coplanar.
There are no solutions to compare with as in the mode 1 problem. If
the results can be verified, then the mixed-mode solution involving
all three modes should give good results. However the solution is not
expected to be as accurate as for mode 1, since it was observed in
Chapter 4 that there is very little difference in the value of the
secondary SIF  between the rectangular and the semi-elliptical
profiles. In the latter case the secondary value should become of
primary importance as the ends are approached because of changing
crack front curvature. Physically the problem with the model is that
everything is calculated in a plane perpendicular to the plate
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surfaces, while the SIF is defined in a plane normal to the crack
front.  Considering this it is remarkable that the comparisons with
the finite element solutions are so close for mode 1, see Figs. 4.1-4,
6.1,2. Perhaps the mechanism of the model is such that the energy

release rate, the expression for which is repeated below,

2, K2

2
d - o L
a,(U-Y) =6 = { Ky~ K

- . 7= K2 } , (6.10)

3

is more accurate than the individual values of the SIFs. If this is
true, then it may explain why the secondary value of the line-spring
SIF does not behave as expected, i.e. the above combination of K2 and
K3 is more accurate. In the mode 1 case, it doesn’t matter because
there is only one non-zero value. Since the secondary value is zero
in the center of the crack due to symmetry, the primary SIF may not be
too affected by the rest of the curve. This of course is the most
dependable value calculated by the LSM.

The results in tables 6.23-34 are for axial and circumferential
semi-elliptical cracks in a cylinder of varying radius. Crack lengths
and depths are also varied. The value at the center of the crack is
reported. In the case of twisting, as can be seen from the plate
results of Chapter 4, the maximum is typically at the ends. This is
because of the strip results from Appendix C, table C.1 (05), where
the SIF decreases as the crack goes deeper into the plate. As with
the mode 1 results, the plate solutions may be used to get an idea of
the character of the distribution. The results for out-of-plane shear
are nearly insensitive to radius, except for long and deep cracks.

The in-plane shear, the most important loading case, behaves in a more
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reasonable way. More results for the toroidal shell are presented in
tables 6.35-46 for a/h=1,2, and R/h=10. As with the mode 1 tables,
the elbow curvature is the parameter that is of most interest. Again
these results are not very sensitive to curvature. This should be

expected from the results of the cylinder.
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Table

6.1 Mode

1

normalized

stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=.5, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
R/h
5 .735 .400 .182 .0525 .00566
Kl(O) 10 .733 .396 .179 .0512 .00554
K 20 .731 .394 .177 .0506 .00549
1m 50 .730 .392 .175 .0502 .00547
+0 .729 .390 .174 .0499 .00547
Internal crack
5 .718 .380 .172 .0514 .00594
Kl(O) 10 .723 .384 .173 .0506 .00571
K 20 .725 .386 .173 .0502 .00559
1m 50 727 .388 .174 .0500 .00552
+00 .792 .390 .174 .0499 .00547
BENDING
External crack
LO/h .2 .4 .6 .8 .95
R/h
5 .716 . 318 .0630 .0244 .00810
KI(O) 10 .713 .313 .0586 .0262 .00935
K 20 .712 .310 .0562 .0271 .00947
1b 50 .710 . 308 .0546 .0276 .00955
+0 .709 . 306 .0532 .0281 .00960
Internal crack
5 .698 .294 .0501 .0270 .00925
KI(O) 10 .702 . 298 .0508 .0277 .00943
K 20 .705 .301 .0516 -.0280 .00951
1b 50 707 .303 .0524 .0281 .00957
+00 .709 .306 .0532 .0281 .00960
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Table

crack in a spherical shell, a/h=1, v=.3.

6.2 Mode

1

normalized

stress intensity
factors at the center of a semi-elliptical surface

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
R/h
5 .824 .527 .267 .0834 .00967
Kl(O) 10 .822 .520 .258 .0784 .00895
K 20 .821 .515 .252 .0756 .00862
1m 50 .819 .511 .248 .0739 .00844
+00 .817 .507 .244 .0725 .00833
Internal crack
5 .798 .481 .236 .0762 .00999
Kl(O) 10 .805 .490 .237 .0739 .00921
K 20 .810 .496 .239 L0729 .00879
im 50 .814 .501 .242 .0725 .00852
+00 .817 .507 .244 .0725 .00833
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
R/h
5 .812 .464 .160 .0022 .0086
Kl(O) 10 .810 .456 .150 .0039 .0096
K 20 .808 .450 .143 .0073 .0101
1b 50 .807 .447 .138 .0096 .0104
+ .804 .441 .133 .0114 .0106
Internal crack
5 .782 .409 .121 .0087 .0093
KI(O) 10 .791 .419 .123 .0107 .0100
K 20 .796 .427 .126 .0114 .0103
1b 50 .801 .434 .129 .0116 .0105
+00 .804 .441 .133 .0114 .0106
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Table

crack in a spherical shell, a/h=2, v=.3.

6.3 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
R/h

5 .882 .643 .375 .136 .0180
K,(0) 10  .886  .644  .366  .124  .0152
K 20 .886 . 641 .356 .116 .0136
1m 50 .885 .635 .347 .109 .0126
+0 .883 . 627 .336 .104 .0120

Internal crack
5 .851 .572 .310 .111 .0169
KI(O) 10 .862 .589 .315 .106 .0147
K 20 .870 .602 .320 .104 .0134
im 50 .876 .613 .326 .103 .0126
+0 .883 . 627 .336 .104 .0120

BENDING

External crack

Lo/h .2 .4 .6 .8 .95
R/h

5 .873 .595 .284 .0545 .0034
KI(O) 10 .878 . 598 .275 .0421 .0065
K 20 .879 .595 .264 .0326 .0084
1b 50 .878 .589 .253 .0251 .0097
+00 .875 .578 .239 .0180 -.0107

Internal crack
5 .839 .513 .204 .0231 .0064
KI(O) 10 .852 .533 .212 .0188 .0083
K 20 .861 . 549 .219 .0170 .0094
1b 50 .868 .563 .227 .0166 .0102
+00 .875 .578 .239 .0180 .0107
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Table

crack in a spherical shell, a/h=4, v=.3.

6.4 Mode

1

normalized

stress intensity
factors at the center of a semi-elliptical surface

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
R/h
5 .907 .708 .458 .193 .0316
Kl(O) 10 .922 .739 .480 .191 .0273
K 20 .929 .751 .484 .182 .0232
1m 50 .932 .753 .475 .168 .0196
+0 .930 .741 .450 .149 .0165
Internal crack
5 .884 .645 .384 .154 .0274
Kl(O) 10 .900 .674 .400 .151 .0237
X 20 .911 .695 .413 .147 .0208
1m 50 .920 .715 .426 .146 .0184
+00 .930 .741 .450 .149 .0165
BENDING
External crack
LO/h .2 .4 .6 .8 .95
R/h
5 .899 .665 .372 .109 .00620
Kl(O) 10 .916 .704 .404 .119 .00281
K 20 .925 .720 .412 .104 .00130
1b 50 .928 .723 .403 .0888 .00533
+® .926 .710 .374 .0663 .00918
Internal crack
5 .875 .595 . 287 .0646 .00005
Kl(O) 10 .892 .629 .309 .0634 .00274
K 20 .904 .655 .326 .0614 .00528
1b 50 .914 .678 .343 .0608 .00747
+00 .926 .710 .374 .0663 .00918
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Table

6.5 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
R/h
5 - - _ _ _
KI(O) 10 .932 771 .537 .243 .0429
K 20 .950 .820 .598 .272 .0429
1m 50 .963 .856 .642 .288 .0391
+00 .968 . 862 .624 .245 .0255
Internal crack
5 _ - - - _
K, (0) 10 .923  .741  .487  .207  .0373
K 20 .939 779 .526 .219 .0355
1m 50 .952 .813 .562 .227 .0318
+0 .968 . 862 .624 .245 .0255
BENDING
External crack
LO/h .2 .4 .6 .8 .95
R/h
5 - - - - -~
Kl(O) 10 .926 .735 .455 .154 .0122
K 20 .945 .793 .533 .194 .0144
1b 50 .960 .838 .592 .219 .0120
+00 .966 . 846 .576 .173 -.00266
Internal crack
5 _ _ - - -
K, (0) 10  .917  .702  .403  .119  .00664
X 20 .934 .748 .453 .136 .00605
1b 50 .948 .788 .499 .149 .00319
+00 .966 .846 .576 .173  -.00266
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Table 6.6 Distribution of the mode 1 normalized
stress intensity factor along a semi-elliptical
surface crack in a toroidal shell 1located at
different positions, see Fig. 6.5, a/h=1, R/h=10,
Ri/R=3, Lo/h=.4, v=.3.

MEMBRANE LOADING

Internal External
Position+ A B C D A B C D
y/a
0. .493 .497 .499 .501 .512 .521 .505 .517
.1 .492 .496 .498 .500 .511 .519 .504 .516
.2 489 .493 .495 .497 .507 .516 .501 .513
.3 .484 .489 .490 .492 .502 .511 .496 .508
.4 .477 .482 483 .485 .495 .503 .489 .500
.5 .468 .472 .473 .476 .484 .493 .479 .490
.6 .455 .460 .461 .463 .471 .479 .466 .477
7 .439 .444 445 .447 .454 .462 .450 .460
.8 .418 .423 .423 .426 .432 .439 .428 .437
.9 .380 .394 .393 .397 .401 .408 .398 .406
.95 .367 .373 .371 .375 .379 .385 .376 .384
.98 .348 .353 .352 .355 .368 .364 .355 .363
BENDING
Internal External
Position+ A B C D A B C D
y/a
0. .423 .429 .431 .433 .446 .457 .439 .453
.1 .424 .430 .432 .434 .447 .458 .439 .454
.2 .427 .433 .435 .437 .449 .460 .442 .456
.3 .432 .437 .439 .442 .454 .464 .447 .461
.4 .438 .444 .446 .448 .459 .470 .453 .466
.5 .446 .452 .453 .456 .467 .477 .460 .473
.6 .456 .461 .462 .466 .475 .485 .469 .482
.7 .466 .472 .472 .476 .484 .493 .478 .490
.8 .476 .482 .482 .486 .493 .502 .488 .499
.9 .484 .491 .490 .494 .499 .507 .495 .505
.95 .485 .492 .490 .495 .499 .507 .495 .505
.98 .481 .488 .486 .491 .494 .502 .491 .500
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Table 6.7 Mode 1 normalized stress intensity
factors at the center of 2 semi-elliptical surface
crack in a toroidal shell. The crack is located at

position A of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Ly/h .2 .4 .6 .8 .95
Ri/R

Kl(O) 1 .731 .393 .177 .0506 .00550
K 3 .730 . 393 .176 .0505 .00549
1m 5 .730 .392 .176 .0505 .00549
+0 .729 .391 .175 .0503 .00549

Internal crack
KI(O) 1 .724 .385 .173 .0502 .00561
K 3 .724 .385 .173 .0502 .00559
1mn 5 .725 . 386 .173 .0501 .00559
+0 .725 .386 .173 .0501 .00556

BENDING
External crack
Ly/h .2 4 .6 .8 .95
Ri/R

K, (0) 1 .711  .309  .0561 -.0270 -.00943
K 3 .711 . 308 .0556 .0271 .00945
1b 5 .710 .308 .0554 .0272 .00945
+00 .710 .307 .0548 .0274 .00947

Internal crack
KI(O) 1 .704 . 299 .0510 -.0280 .00948
K 3 .704 .300 .0511 .0280 .00949
1b 5 .704 .300 .0512 .0280 .00950
+00 .705 .301 .0514 .0280 .00950
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Table 6.8 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
Ri/R

Kl(O) 1 .733 .396 .178 .0509 .00551
K 3 .733 .396 .178 .0509 .00551
1m 5 .733 .396 .178 .0509 .00551
+00 .732 .395 .178 .0508 .00550

Internal crack
Kl(O) 1 .725 .386 .173 .0504 .00565
K 3 .725 .386 .173 .0504 .00564
1m 5 .725 .387 .173 .0504 .00564
+00 .726 .387 .174 .0504 .00562

BENDING
External crack
Ly/b -2 4 .6 .8 .95
Ri/R

K((©0) 1 .713 312  .0578 -.0266 -.00943
K. 3 .713 .312 .0576 -.0267 -.00945
1b 5 .713 .312 .0576 -.0267 -.00945
+00 .713 .312 .0574 -.0268 -.00947

Internal crack
Kl(O) 1 .705 .300 .0516 -.0278 -.00949
X 3 .705 .301 .0518 -.0278 -.00950
1b 5 .705 .301 .0519 -.0278 -.00951

+00 .706 .302 .0521 -.0279 -.00952
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Table 6.9 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING
External crack
Lo/h .2 .4 .6 .8 .95

1 727 .388 174 .0605  .00560
K 3 .728 .390 .175 .0503  .00551
5 .729 .391 .175 .0503  .00550
® .729 .391 .175 .0503  .00549

Internal crack

1 .729 .392 .176 .0506  .00555
K 3 .726 .388 .174 .0602  .00554

5

00

.726 . 387 .173 .0501  .00555
.725 . 386 .173 .0501 .00556

BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) .707 .303 .0632 -.0275 -.00946

1
K 3 .708 .305 .0538 -.0275 -.00948
5 .709 .306 .0542 -.0275 -.00948
+o .710 .307 .0548 -.0274 -.00947

Internal crack

Kl(O) 1 .710 .307 .05651 -.0271 -.00944
K 3 .707 .303 .0625 -.0278 -.00950
1b 5 .706 .302 .0620 -~.0279 -.00950
+® .705 .301 .0514 -.0280 -.00950
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Table 6.10 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING
External crack
Lo/h .2 .4 .6 .8 .95

R, /R

1 .729 .392 .176 .0506  .00555
K 3 732 .394 177 .0507  .00551
5 .732 .395 .177 .0507  .00551
0 .732 .395 .178 .0508  .00550

Internal crack

K,(0) 1 .727  .388  .174  .0505 .00560
K 3 .726 .388 .174 .0504 .00561
1m 5 .726 .388 .174 .0504 .00561
+00 .726 .387 .174 .0504 .00562
BENDING
External crack
Ly/h .2 4 .6 8 .95
Ri/R

Kl(O) 1 .710 .307 .0551 -.0271 -.00944
K. 3 712 .311 .0667 -.0270 -.00948
1b 5 .713 .311 .0570 -.0269 -.00948
+00 .713 .312 .0574 -.0268 -.00947

Internal crack
Kl(O) 1 .707 .303 .0532 -.0275 -.00946
K 3 .706 .303 .0525 -.0278 -.00952
1b 5 .706 .302 .0523 -.0278 -.00952

0 .706 .302 .0521 -.0279 -.00952
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Table 6.11 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Ly/h .2 4 .6 .8 .95
Ri/R
K,(0) 1  .819 513  .252  .0757 .00866
K 3 .819 .512 .250 .0752 .00861
1m 5 .818 .b11 .250 .0749 .00859
+00 .817 .509 .248 .0743 .00854
Internal crack
K1(0) 1 .807 .492 .237 .0727 .00885
K 3 .808 .493 .237 .0725 .00878
1m 5 .808 .493 .238 .0724 .00875
+0 .810 .494 .238 .0723 .00867
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .807 .448 .142 .0071 .0100
K 3 . 806 .446 .140 .0078 .0100
1b 5 .805 .445 .139 .0081 .0101
+00 .804 .443 .137 .0089 .0102
Internal crack
Kl(O) 1 .793 .422 .123 .0117 .0102
K 3 .794 .423 .124 .0119 .0103
1b 5 .794 .424 .124 .0119 .0103
0 .795 .425 .124 .0120 .0103

229



Table 6.12 Mode

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .823 .520 . 257 .0773 .00879
K 3 .824 .521 .257 0771 .00875
1m 5 .884 .520 .256 .0770 .00874
+% .824 .520 .256 .0768 .00871
Internal crack
Kl(O) 1 .809 .496 .240 .0738 .00901
K 3 .810 .497 .241 .0738 .00897
im 5 .811 .498 .241 .0738 .00895
+00 .812 .499 .242 .0738 .00890
BENDING
External crack
Ly/h -2 4 .6 .8 .95
Ri/R
Kl(O) 1 .811 .457 .148 .0052 .0099
K 3 .811 .457 .148 .0055 .0099
1b 5 .811 .457 .148 .0056 .0100
+00 .811 .457 .147 .0060 .0100
Internal crack
Kl(O) 1 .796 .427 .127 .0107 .0102
X 3 .797 .429 .128 .0107 .0102
1b 5 .797 .429 128 .0107 .0102
+00 .798 .431 .129 .0106 .0103
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Table 6.13 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .813 .502 .244 .0744 .00888
K 3 .815 .505 .245 .0739 .00859
im 5 .816 .506 .246 .0739 .00855
‘o0 .817 . 509 .248 .0743 .00854
Internal crack
Kl(O) 1 .817 .509 .249 .0753 .00880
K 3 .812 .499 .241 .0730 .00865
1m 5 .811 .497 .240 .0726 .00864
+0 .810 .494 .238 .0723 .00867
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .799 .434 .132 .0094 .0101
K 3 .802 .439 .134 .0096 .0102
1b 5 .803 .440 .135 .0094 .0102
+00 .804 .443 .137 .0089 .0102
Internal crack
K, (0) 1  .804 .442  .138 -.0080 -.0100
K 3 .798 .431 .129 .0109 .0103
1b 5 .797 .429 .127 .0115 .0103
+00 .795 .425 .124 .0120 .0103
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Table

6.14

Mode

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
R./R
Kl(O) 1 .817 .509 .249 .0753 .00880
K 3 .822 .517 .254 .0762 .00871
im 5 .823 .519 .255 .0764 .00870
+00 .824 .520 .256 .0768 .00871
Internal crack
KI(O) 1 .813 .502 .244 .0744 .00888
K 3 .813 .501 .243 .0739 .00886
im 5 .813 .501 .242 .0739 .00887
+00 .812 .499 .242 .0738 . 00890
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
R./R
Kl(O) 1 .804 .442 .138 .0080 .0100
K 3 .810 .453 .145 .0067 .0101
1b 5 .811 .455 .146 .0064 .0101
+00 .811 .457 .147 .0060 .0100
Internal crack
Kl(O) 1 .799 .434 .132 .0094 .0101
K 3 .799 .433 .131 .0103 .0103
1b 5 .799 .433 .130 .0104 .0103
+00 .798 .431 .129 .0106 .0103
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Table 6.15 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .883 .633 .351 .115 .0138
K 3 .882 .630 .348 .113 .0135
1m 5 .881 .629 .346 112 .0133
+® .880 .625 .341 .109 .0130
Internal crack
Kl(O) 1 .864 .501 .313 .1024 .0136
K 3 .865 .592 .312 .1017 .0133
1m 5 .865 .592 .313 .1014 .0132
+%0 .867 .594 .313 .1008 .0129
BENDING
External crack
Lo/b .2 4 6 .8 .85
Ri/R
Kl(O) 1 .874 .586 .258 .0318 .00803
K 3 .873 .582 .253 .0293 .00838
1b 5 .873 .581 .251 .0282 .00853
+00 .871 .576 .245 .0251 .00893
Internal crack
Kl(O) 1 .854 .535 .209 .0151 .00920
S 3 .855 . 537 .209 .0144 .00939
1b 5 .855 .537 .209 .0141 .00948
+00 .857 .539 .210 .0136 .00968
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Table 6.16 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Ly/h .2 4 .6 .8 .95
Ri/R
Kl(O) 1 .890 .650 .368 .122 .0145
K 3 .891 .652 .369 .122 .0143
Im 5 .801 .652 .369 .121 .0142
+00 .892 .653 . 369 .121 .0141
Internal crack
Kl(O) 1 .870 .604 .324 .107 .0142
K 3 .872 .607 .326 .107 .0141
1m 5 .873 .609 .327 .107 .0140
+00 .875 .613 .330 .108 .0139
BENDING
External crack
Ly/h .2 4 .6 .8 .95
Ri/R
Kl(O) 1 .882 .606 .279 .0400 -.00745
K. 3 .883 .608 .279 .0394 .00767
1b 5 .884 .608 .279 .0391 .00777
+00 .884 .610 .279 .0384 . 00803
Internal crack
Kl(O) 1 .861 .551 .224 .0202 .00884
K 3 .863 .5b5 .227 .0206 .00896
1b 5 .864 .557 .228 .0208 .00901
+00 .866 .562 .232 .0214

.00914
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Table 6.17 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .875 .614 .333 .110 .0140
K 3 .877 .618 .335 .108 .0131
Im 5 .878 .620 .336 .108 .0130
+00 .880 .625 .341 .109 .0130
Internal crack
KI(O) 1 .879 .623 .342 L1122 .0140
K 3 .871 .605 .322 .1037 .0130
1m 5 .869 .600 .318 .1022 .0129
+00 .867 .594 .313 .1008 .0129
BENDING
External crack
Ly/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .866 .563 .235 .0243 .00849
K 3 .868 .568 .237 .0228 .00905
1b 5 .869 .570 .239 .0231 .00909
+0 .871 .576 . 245 .0251 .00893
Internal crack
K, (0) 1 .870  .574  .245  .0275 -.00829
K 3 .862 .552 .222 .0174 .00941
1b 5 .860 . 547 .217 .0155 -.00958
+00 .857 .539 .210 .0136 .00968
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Table 6.18

Mode 1

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Ly/h -2 4 .6 .8 .95
Ri/R
Kl(O) 1 .879 .623 .342 .112 .0140
K 3 .889 .645 .361 .118 .0139
im 5 .890 .650 .365 .119 .0139
+00 .892 .653 .369 .121 .0141
Internal crack
Kl(O) 1 .875 .614 .333 .110 .0140
K 3 .876 .616 .333 .108 .0138
1m 5 .876 .615 .332 .108 .0138
+00 .875 .613 .330 .108 .0139
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .870 .574 .245 .0275 .00829
K 3 .881 .601 .270 .0346 .00827
1b 5 .883 .605 .274 .0363 .00822
+00 .884 .610 .279 .0384 .00803
Internal crack
Kl(O) 1 .866 .563 .235 .0243 .00849
K. 3 .867 .565 .235 .0224 .00906
1b 5 .867 .565 .234 .0220 .00913
+0 .866 .562 .232 .0214 .00914
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Table 6.19 Mode

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Ly/h -2 4 .8 .8 .95
Ri/R
KI(O) 1 .921 732 .463 .174 .0232
K 4 .920 L727 .455 .168 .0219
1m 7 .920 .725 .452 .165 .0214
+00 .919 720 .443 .159 .0203
Internal crack
K,(0) 1 .900  .672  .392  .141  .0208
K 4 .901 .672 .390 .138 .0199
Im 7 .901 .872 .389 .137 .0196
»00 .902 .674 .389 .135 .0189
BENDING
External crack
Ly/h .2 4 .6 .8 .95
Ri/R
Kl(O) 1 .916 .696 .3856 .0943 .00107
K 4 .9156 .692 .376 .0870 .00245
1b 7 .914 .689 .372 .0841 .00297
»00 .913 .684 .362 .0770 .00416
Internal crack
KI(O) 1 .893 .627 .300 .0538 .00509
K. 4 .893 .627 .297 .0507 .00587
1b 7 .894 .627 .296 .0496 .00615
+00 .895 .628 .296 .0477 .00673
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Table 6.20 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING
External crack

’LO/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .933 .763 .503 .197 .0260
K 4 .935 .769 .509 .198 .0255
1m 7 .936 771 .511 .198 .0253
%0 .938 .775 .515 .199 .0249
Internal crack
Kl(O) 1 .913 .703 .425 .156 .0227
K 4 .917 .713 .434 .159 .0224
im 7 .918 .716 .437 .159 .0223
40 .921 .723 .444 .162 .0222
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .928 .734 .435 .120 .00142
K 4 .931 .742 .443 .122 .00088
1b 7 .932 .744 .445 .123 .00068
+0 .934 .749 .451 .124 .00021
Internal crack
KI(O) 1 .907 .665 .341 .0713 .00363
K 4 .911 .676 .352 .0744 .00387
1b 7 .913 .680 .356 .0756 .00395
+00 .916 .689 .365 .0783 .00410
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Table 6.21 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING

External crack

LO/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .915 712 .437 .162 .0228
K 4 .917 714 .435 .155 .0202
1m 7 .917 715 .437 .156 .0200
+® .919 .720 .443 .159 .0203
Internal crack
Kl(O) 1 .916 .715 .439 .162 .0225
K 4 .907 .686 .402 .141 .0193
im 7 .905 .680 .395 .138 .0190
+00 .902 .674 .389 .135 .0189
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .909 .674 .355 .0789 .00259
K 4 .910 .676 .352 .0724 .00453
1b 7 911 .678 .354 .0728 .00462
+o .913 .684 .362 .0770 .00416
Internal crack
KI(O) 1 .910 .676 .356 .0784 .00283
K 4 .900 .643 .312 .0542 .00615
1b 7 .897 .636 .304 .0507 .00655
+00 .895 .628 .296 .0477 .00673
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Table 6.22 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .916 .715 .439 .162 .0225
K 4 .935 .766 .500 .190 .0239
1m 7 .937 772 .509 .195 .0243
+00 .938 775 .515 .199 .0249
Internal crack
KI(O) 1 .915 712 .437 .162 .0228
K 4 .922 .726 .448 .163 .0221
1n 7 .923 .726 .448 .163 .0221
+00 .921 .723 .444 .162 .0222
BENDING
External crack
Ly/h .2 4 .6 .8 .95
Ri/R
Kl(O) 1 .910 .676 .356 .078 -.00283
K 4 .931 .738 .432 .112 -.00103
1b 7 .933 .745 .443 .118 -.00051
+00 .934 .749 .451 .124 .00021
Internal crack
K,(0) 1 .908  .674  .355  .0789 -.00259
K 4 .917 .692 .370 .0803 -.00394
1b 7 .917 .692 .369 .0800 -.00407

00

.916 .689 .365 .0783 -.00410
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Table 6.23 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=.5, v=.3.

IN-PLANE SHEAR

Quter axial crack
Ly/h .2 4 6 .8 .95

R/h

5 .736 .545 .466 .351 .186

K3(O) 10 .737 .546 .466 .350 .185
K 20 737 .546 .466 .350 .185
31 50 .738 . 547 .466 .350 .184
+0 .738 . 547 .467 .350 .184

Inner axial crack

5 .740 .550 .470 .352 .185
10 .739 .549 .468 .351 .184
20 .739 .548 .467 .350 .184
31 50 .738 . 547 .467 .350 .184

+0 .738 . 547 .467 .350 .184

=
w
—_
(=)
=

=

Quter circumferential crack

Ly/h .2 .4 .8 8 .95
R/h
5 .736  .545  .466  .351  .186
K,(0) 10  .737 546  .466  .350  .185
¥ — 20 737 546 466  .350  .185

31 50 .738 . 547 .466 .350 .184
0 .738 . 547 .467 .350 .184

Inner circumferential crack

5 .740 .550 .470 .352 .185
10 .739 .549 .468 .351 .185
20 .739 .548 .468 .350 .184
31 50 .738 .548 .467 .350 .184

00 .738 .547 .467 .350 .184

=
w
~
(=)
~

=
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Table 6.24

Mode

normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=.5, v=.3.

O0UT-OF-PLANE SHEAR

Outer axial crack

LO/h .2 .4 .6 .8 .95
R/h

5 .988 .883 .684 .466 .277

K2(0) 10 .988 .883 .685 .467 .277
K 20 .988 .883 .685 .467 .277
20 50 .988 .883 .685 .467 .277
+00 .988 .883 .685 .467 .277

Inner axial crack

5 .988 .883 .685 .467 .277

K2(0) 10 .988 .883 .685 .467 .277
K 20 .988 .883 .685 .467 .277
20 50 .988 .883 .685 .467 .277
+00 .988 .883 .685 .467 .277

Outer circumferential crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .988 .882 .682 .463 .274

K2(0) 10 .988 .883 .684 .466 .276
K 20 .988 .883 .685 .467 .277
20 50 .988 .883 .685 .467 .277
0 .988 .883 .685 .467 .277

Inner circumferential crack

5 .988 .882 .683 .464 .275

K2(O) 10 .988 .883 .684 .466 .277
K 20 .988 .883 .685 .467 .277
20 50 . 988 .883 .685 .467 .277
+00 .988 .883 .685 .467 .277
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Table 6.25 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=.5, v=.3.

TWISTING
OQuter axial crack
Ly/h .2 .4 6 .8 .95
R/h

5 .710 .408 102 -.637 -6.01

K3(0) 10 .711 .409 .102  -.637 -6.01
K 20 711 .410 .103  -.637 -6.01
3T 50 712 .410 .103 -.637 -6.01
+0 .712 .411 .103 -.636 -6.01

Inner axial crack

5 .714 .415 .110 -.624 -5.94
10 .713 .413 .107 -.630 -5.97
20 .713 .412 .106 -.633 -5.99
3T 50 712 .411 .104 -.635 -6.00

0 .712 .411 .103 -.636 -6.01

=
=)
A

=

Outer circumferential crack
Ly/h .2 .4 .6 .8 .95

R/h

5 .710 .408 .101 -.637 -6.01
10 711 .409 .102  -.638 -6.01
20 .711 .410 .102 -.637 -6.01
3T 50 712 .410 .103 -.637 -6.01

»0 712 .411 .103 -.636 -6.01

~
=)
~

=

Inner circumferential crack

5 .714 .415 111 -.622 -5.93

K3(0) 10 .713 .413 .107 -.629 -5.97
20 .713 .412 .106 -.632 -5.98
3T 50 .712 .411 .104 -.634 -6.00
0 .712 .411 .103 -.636 -6.01

|

=
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Table 6.26 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=1., v=.3.

IN-PLANE SHEAR

Quter axial crack
Ly/h .2 4 6 .8 .95

R/h

5 .797 .632 .576 .492 .304
10 .798 .633 .576 .490 .301
20 .799 .634 .576 .489 .300
31 50 .799 .635 .576 .489 .299

00 .800 .635 577 .489 .299

o]
w
—
(=)
~—

=

Inner axial crack

5 .803 .641 .585 .496 .303

K3(0) 10 .802 .639 .581 .493 .301
K 20 .801 .8637 .579 .491 .300
31 50 .800 .636 .578 .490 .299
+00 .800 .635 .577 .489 .299
Quter circumferential crack
Ly/h -2 4 6 .8 .95
R/h

5 .797 .631 .575 .492 .305

KB(O) 10 .798 .633 .575 .490 .302
Ko 20 .799 .634 .576 .489 .300

31 50 .799 .634 .576 .489 .299
0 .800 .635 .577 .489 .299

Inner circumferential crack

5 .803 .642 .586 .498 . 304

K,0) 10  .802  .639  .582  .494 .30l
g— 20 801  .638  .580 ~ .491  .300
31 50  .800  .636  .578  .480  .299

+00 .800 .635 .577 .489 .299
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Table
factor
crack

6.27

Mode

normalized stress intensity

at the center of a semi-elliptical surface

plane shear, a/h=1., v=.3.

OUT-OF-PLANE SHEAR

Outer axial crack

in a cylindrical shell subjected to out-of-

Ly/h .2 .4 .6 .8 .95
R/h

5 .996 .953 .850 .691 .485

K2(O) 10 .996 .953 .851 .692 .486
K 20 .996 .953 .851 .693 .487
20 50 .996 .953 .851 .693 .487
+00 .996 .953 .851 .693 .487

Inner axial crack

5 .996 .953 .851 .693 .486

K,(0) 10  .996  .953  .851  .693  .487
K 20 .996 .953 .851 .693 .487
20 50 .996 .953 .851 .693 .487
+ . 996 .953 .851 .693 .487

OQuter circumferential crack
Ly/h .2 4 .6 .8 .95
R/h
5 .9985 .951 .844 .679 .472
K2(0) 10 . 996 .953 .849 .688 .482
K 20 .996 .953 .850 .691 .485
20 50 .996 .953 .851 .693 .487
+00 .996 .953 .851 .693 .487
Inner circumferential crack

5 .995 .952 .846 .685 .477

K,(0) 10  .996  .953  .850  .691  .485
K 20 . 996 .953 .851 .693 .487
20 50 .996 .953 .851 .693 .487
o0 .996 .953 .851 .693 .487

245




Table 6.28 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=1., v=.3.

TWISTING
Outer axial crack
Ly/h .2 4 .6 .8 .95
R/h

5 .776  .519  .273 -.334 -5.25
Ks(0) 10 777  .520  .274 -.337 -5.27
©— 2 .778 521  .275 -.337 -5.27
3T 50 .779  .522  .276 -.336 -5.27
s 779 523  .277 -.335 -5.27

Inner axial crack

5 .783  .531  .292 -.298 -5.05
K;(0) 10  .781  .528  .286 -.314 -5.15
©— 20 .780  .526  .282 -.324 -5.20
3T 50 .780  .525  .279 -.330 -5.24
s 779  .523  .277 -.335 -5.27

Outer circumferential crack
Ly/h .2 4 .6 .8 .95

R/h

5 .776 .b17 271 -.336 -5.27
10 777 .519 273 -.339 -5.28
20 778 .521 .274 -.338 -5.28
3T 50 779 .522 .275 -.337 -5.28

0 779 .523 .277  -.335 -5.27

o]
(=)
~

=~

inner circumferential crack

5 .783 .533 .296 -.289 -4.99

K3(0) 10 .782 .529 .287 -.310 -5.12
K 20 .781 .526 .283 -.322 -5.19
T 50 .780 .525 .280 -.329 -5.23
0 779 .523 .277  -.335 -5.27
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Table 6.29 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=2., v=.3.

IN-PLANE SHEAR

Quter axial crack
Lo/h .2 .4 .6 .8 .95

R/h

5 .826 .684 .659 .631 .457

3(0) 10 .827 .684 .658 .626 .449
K 20 .828 .685 .658 .624 .445
31 50 .829 .686 .658 .623 .443
0 .829 .687 .659 .623 .442

Inner axial crack

5 .833  .696  .673  .641  .458
K,(0) 10  .832 693  .668  .633 .45l
©— 20 .831  .601  .664  .620  .447
31 50 .830 .689  .662  .625  .444
+0 829 687  .659  .623  .442

Outer circumferential crack
Ly/h .2 .4 .6 .8 .95

R/h

5 .825  .682  .657  .632  .463

3(0) 10 827  .683  .657  .626  .451
20 .828  .685  .657  .623  .446

31 50 .828  .686  .658  .623  .443
+0 829  .687  .659  .623  .442

=

Inner circumferential crack

5 .834 .699 .677 . 647 .463

K3(0) 10 .832 .694 .670 .636 .452
= — 20 .831 .692 .665 .630 .447
31 50 .830 .689 .662 .626 .444
+00 .829 .687 .659 .623 .442

247



Table 6.30 Mode
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=2., v=.3.

OUT-OF-PLANE SHEAR

OQuter axial crack

normalized stress intensity

Lo/h .2 .4 .6 .8 .95
R/h
5 .999 .98  .948  .871  .716
K2(O) 10 .999 .986 .950 .874 .720
X 20 .999 .986 .950 .875 .722
20 50 .999 .986 .950 .875 .723
+0 .999 .986 .950 .876 .723
Inner axial crack

5 .999 .986 .950 .876 722

K2(0) 10 .999 .986 .950 .876 .723
. 20 .999 .986 .950 .876 .723
20 50 .999 .986 .950 .876 .723
+0 . 999 .986 .950 .876 .723

Quter circumferential crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .998 .982 .936 .845 .678

K2(O) 10 .999 .985 .946 .865 .707
K 20 .999 .986 .949 .872 717
20 50 .999 .986 .950 .875 .721
+00 .999 .986 .950 .876 .723

Inner circumferential crack

5 .998 .983 .942 .857 .695

K2(0) 10 .999 .985 .948 .872 .716
K 20 .999 .986 .950 .876 .722
20 50 .999 .986 .950 .876 .723
+00 .999 .986 .950 .876 .723

248




Table 6.31 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=2., v=.3.

TWISTING
Outer axial crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .807 .581 .398 .007 -3.63

K3(0) 10 .808 .583 .397 .018 -3.72
. 20 .809 .584 .308 .022 -3.75
3T 50 .810 .585 .399 .022 -3.76
+00 .811 .587 .401 .020 -3.75

Inner axial crack

5 .815 .598 .427 057 -3.21

Ks(0) 10  .813  .504  .417° .027 -3.43
. 20 .812 .591 .411 .008 -3.56
3T 50 .812 .589 .406 .007 -3.66
+ .811 .587 .401 .020 -3.75

Outer circumferential crack
Ly/h .2 4 .6 .8 .95
R/h

5 .806 .579 .395 .009 -3.63

K;(0) 10  .807 581  .395 -.022 -3.74
K 20 .809 .583 .396 .025 -3.77
3T 50 .810 .585 .308 .024 -3.78
% .811 .587 .401 .020 -3.75

Inner circumferential crack

5 .816 .602 .436 .084 -3.00

K3(0) 10 .814 .596 .422 .039 -3.34
K 20 .813 .592 .413 .013 -3.52
3T 50 .812 .590 .407 .005 -3.65
+o .811 .587 .401 .020 -3.75
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Table 6.32 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=4., v=.3.

IN-PLANE SHEAR

OQuter axial crack
Lo/h .2 .4 .6 .8 .95

R/h

5 .837 .709 712 .745 .625
10 .838 .709 .709 737 .610
20 .838 .709 .708 .732 .601
31 50 .839 .710 .708 .729 .594

00 .840 .712 .709 .728 .580

=
=)
N

=

Inner axial crack

5 .843 .720 .726 .757 .627
10 .843 .718 .721 .747 .613
20 .842 .716 717 .740 .604
3I 50 .841 .714 .713 .734 .597

+00 .840 712 .709 .728 .590

=
o
R

=

Quter circumferential crack

Ly/h .2 4 .6 .8 .95
R/h

5 .836 707 .711 .750 .643
(0) 10 . 837 .707 .708 737 .616
20 .838 .708 .707 .731 .602
31 50 .839 .710 .707 .728 .594
00 .840 712 .709 .728 .580

=
w

|

=

Inner circumferential crack

5 .845 .725 .733 771 .645

K3(0) 10 .844 .721 .725 .754 .620
K 20 .843 .718 .719 .743 .606
31 50 .841 .715 714 .735 .597
40 .840 712 .709 .728 .590
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Table 6.33

Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=4., v=.3.

OUT-OF-PLANE SHEAR

Outer axial crack
Lo/h .2 .4 .6 .8 .95
R/h

5 1.00 .996 .986 .859 .879

K2(0) 10 1.00 .996 .987 .962 .884
X 20 1.00 .997 .987 .963 .886
20 50 1.00 .997 .988 .964 .888
+00 1.00 .997 .988 .865 .889

Inner axial crack

5 1.00 .996 .987 .963 .886

K2(O) 10 1.00 .997 .988 .965 .888
. 20 1.00 .997 .988 .965 .889
20 50 1.00 .997 .988 .965 .889
+00 1.00 .997 .988 .965 .889

Quter circumferential crack
LO/h .2 .4 .6 .8 .95
R/h
5 .999 .992 .968 .916 .805
K,(0) 10 1.00 .995  .981  .947  .858
K 20 1.00 .996 .985 .958 .877
20 50 1.00 .997 .987 .963 .885
+00 1.00 .997 .988 .965 .889
Inner circumferential crack

5 .999 .993 .973 .929 .828
KZ(O) 10 1.00 .995 .984 .955 .872
K 20 1.00 .996 - .987 .963 .885
20 50 1.00 .997 .988 .965 .889
+00 1.00 .997 .988 .965 .889
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Table 6.34 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=4., v=.3.

TWISTING
Outer axial crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .819 .611 .473 .251 -1.80

K3(0) 10 .819 .611 .469 .229  -2.00
X 20 .820 .611 .467 .216 -2.12
3T 50 .821 .612 .467 .210  -2.19
0 .822 .615 .470 211 -2.21

Inner axial crack

5 .825 .626 .499 .314 -1.33

K3(O) 10 .825 .623 .491 .284 -1.60
K 20 .824 .621 .484 .2569 -1.81
3T 50 .823 .618 .478 .236  -2.00

+0 .822 .615 .470 211 -2.21

Quter circumferential crack
Ly/h .2 4 .6 .8 .95

R/h

5 .817  .609  .472  .261 -1.64
K,(0) 10  .818  .609  .466  .227 -1.98
©— 20 .89 610  .465  .212 -2.14
31 50 .820  .612  .466  .207 -2.21
s 822 615  .470  .211 -2.21

Inner circumferential crack

5 .827  .631  .513  .367 -.854
K;(0) 10  .826  .627  .499  .311 -1.36
=— 20  .825  .622  .489  .272 -1.70
“3T 50  .823  .619  .479  .241 -1.96

s 822 615  .470  .211 -2.21
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Table 6.35 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position A of Fig. 6.5, R/h=10,
v=.3.

IN-PLANE SHEAR

a/h=1, External

Lo/h .2 .4 .6 .8 .95
Ri/h

K3(0) 1 .798 .632 .575 .490 .303
T 3 .798 .632 .575 .490 .302
31 5 .798 .632 .575 .490 .302
0 .798 .633 .575 .490 .302

a/h=1, Internal
K3(0) 1 .802 .640 .583 .495 .302
. 3 .802 .640 .583 .494 .302
31 5 .802 .640 .583 .494 .302
+00 .802 .639 .582 .494 .301

a/h=2, External
Lo/h 2 .4 .6 .8 .95

Ri/h

Kz(0) 1 .826 683  .657  .627  .454
o 4 .826 .683 .656 .626 .453
31 7 .826 .683 .656 .626 .452
0 .827 .683 .657 .626 .451

a/h=2, Internal
K3(0) 1 .833 .696 .672 .639 .455
. 4 .833 .695 .671 .638 .454
31 7 .833 .695 .670 .637 .453
+00 .832 .694 .670 .636 .452
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.948

Table 6.36 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position A of Fig. 6.5,
R/h=10, v=.3.
OUT-OF-PLANE SHEAR
a/h=1, External
LO/h .2 .4 .6 .8 .95
Ri/h
K,0) 1  .996  .953  .848  .688  .482
K 3 .996 .953 .848 .688 .482
20 5 .996 .953 .849 .688 .482
+0 . 996 .953 .849 .688 .482
a/h=1, Internal
K,0) 1  .996  .953  .850  .601  .485
K 3 . 996 .953 .850 .691 .485
20 5 .996 .953 .850 .691 .485
+0 .996 .953 .850 .691 .485
a/h=2, External
Ly/h -2 4 .6 .8 .95
Ri/h
K2(O) 1 .999 .985 .945 .864 .706
K 4 .999 .985 .945 .865 .706
20 7 .999 .985 .945 .865 707
400 .999 .985 .946 .865 .707
a/h=2, Internal
K2(0) 1 .999 .985 .948 .872 .716
K 4 .999 .985 .948 .872 .716
20 7 .999 .985 .948 .872 .716
00 .985 .872 .716
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Table 6.37 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.

Crack is at position A of Fig. 6.5, R/h=10, v=.3.

TWISTING
a/h=1, External
Ly/h .2 4 .6 .8 .95
Ri/h

K3(0) 1 777 .519 .272 .339 -5.28
K 3 777 .519 .272 .33 -5.28
3T 5 777 .519 .272 .339 -5.28
»0 777 .519 .273 .339 -5.28

a/h=1, Internal
K;(00 1 .782 530  .200 -.304 -5.08
K 3 .782 .530 .289 .306 -5.10
3T 5 .782 .529 .289 .308 -5.10
+0 .782 .529 . 287 .310 -5.12

a/h=2, External
Ly/h .2 .4 .6 .8 .95

Ri/h

K;(0) 1 .807  .580  .395 -.018 -3.71
K 4 .807 .581 .395 .021 -3.73
3T 7 .807 .581 .395 .021 -3.73
+00 .807 .581 .395 022 -3.74

a/h=2, Internal
K3(0) 1 .815 .598 .426 .052 -3.24
o 4 .814 . 597 .424 .046 -3.29
3T 7 .814 .597 .423 .044 -3.30
»0 .814 .596 .422 03¢ -3.34
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Table 6.38 Mode 3 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position B of Fig. 6.5, R/h=10,
v=.3.

IN-PLANE SHEAR

a/h=1, External

Ly/h .2 4 .6 .8 .95
Ri/h

K,0) 1 788  .632  .575  .490  .302
Ko 3 .798 .633 .575 .490 .302
3I 5 .798 .633 .575 .490 .302
+0 .798 .633 .576 .490 .301

a/h=1, Internal
K;(0) 1  .802  .640  .583  .494 .30
K 3 .802 .639 .582 .494 .301
31 5 .802 .639 .582 .494 .301
+0 .802 .639 .581 .493 .301

a/h=2, External
Ly/h -2 4 .6 .8 .95

Ri/h

K3(0) 1 .826 .683 .657 .627 .453
K. 4 .827 .684 .657 .626 .451
31 7 .827 .684 .657 .626 .450
+o . 827 .684 .658 .626 .449

a/h=2, Internal
K3(0) 1 .833 .695 .671 .637 .454
K 4 .832 .694 .669 .635 .452
31 7 .832 .694 .669 .635 .452
B .832 .693 .668 .633 .451
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Table

6.39

Mode 2

normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position B of Fig. 6.5,
R/h=10, v=.3. ,
OUT-OF-PLANE SHEAR
a/h=1, External
Lo/h .2 .4 .6 .8 .95
Ri/h
K,(0) 1 .996  .953  .850  .691  .485
- 3 .996 .953 .850 . .692 .486
20 5 .996 .953 .850 .692 .486
+0 .996 .953 .851 .692 .486
a/h=1, Internal
K2(0) 1 .996 .953 .851 .693 .487
K 3 .996 .953 .851 .693 .487
20 5 .996 .953 .851 .693 .487
0 .996 .953 .851 .693 .487
a/h=2, External
Lo/h .2 .4 .6 .8 .95
Ri/h
K2(0) 1 .999 .986 .948 .871 .716
K 4 .999 .986 .949 .873 .719
20 7 .999 .986 .949 .873 .719
0 .999 .986 .950 .874 .720
a/h=2, Internal
K2(0) 1 .999 .986 .950 .876 .722
K 4 .999 .986 .950 .876 .723
20 7 .999 .986 .951 .876 .723
+o0 .999 .986 .950 .876 .723
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Table 6.40 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.
Crack is at position B of Fig. 6.5, R/h=10, v=.3.

TWISTING
a/h=1, External
LO/h .2 .4 .6 .8 .95
Ri/h

1 777 .519 273  -.337 -5.27
K 3 L7177 .520 .273 -.337 -5.27
5 77 .520 .273 -.337 -5.27
o L7177 .520 .274 -.337 -5.27

a/h=1, Internal

K3(0) 1 .782 .529 .289 -.307 -5.10
T 3 .782 .529 .288 -.310 -5.12
3T 5 .782 .529 .287 -.311 -5.13
00 .781 .528 .286 -.314 -5.15

a/h=2, External
Ly/h .2 .4 .6 .8 .95

Ri/h

K;0) 1 .807  .581  .396 -.017 -3.70
. 4 .808 .582 .397 -.018 -3.71
3T 7 .808 .582 .397 -.018 -3.711
400 .808 .583 .397 -.018 -3.72

a/h=2, Internal
Ka0) 1 .814  .597  .423  .044 -3.31
. 4 .814 .596 .420 .036 -3.37
3T 7 .814 .595 .419 .033 -3.39
o0 .813 .594 .417 .027 -3.43
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Table 6.41 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position C of Fig. 6.5, R/h=10,
v=.3.

IN-PLANE SHEAR
a/h=1, External
Lo/h .2 .4 .6 .8 .95
Ri/h

1 .800 .635 .578 .491 .301
K 3 .799 .633 .576 .490 .301
5 .798 .633 .575 .490 .301
w .798 .633 .575 .490 .302

a/h=1, Internal

K3(0) 1 .800 .636 .579 .492 .301
K 3 .801 .638 .581 .492 .301
31 5 .802 .639 .581 .493 .301
o .802 .639 .582 .494 .301

a/h=2, External
2

Lo/h .4 .6 .8 .95

Ri/h
K3(O) 1 .829 .687 .661 .628 .450
. 4 .827 .684 .657 .625 .449
31 7 .827 .684 .657 .625 .450
+0 .827 .683 .657 .626 .451

a/h=2, Internal

K3(0) 1 .830 .690 .664 .630 .449
K 4 .832 .693 .668 .633 .450
31 7 .832 .694 .669 .634 .451
+00 .832 .694 .670 .636 .452
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Table 6.42 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position C of Fig. 6.5,
R/h=10, v=.3.

O0UT-OF-PLANE SHEAR

a/h=1, External

Ly/h .2 4 .6 8 .95
Ri/h
K2(0) 1 .996 .953 .849 . 689 .483
K 3 .996 .953 . 849 .689 .483
20 5 .996 .953 . 849 .689 .482
o .996 .953 .849 .688 .482
a/h=1, Internal
K., (0) .996  .953  .850  .691  .485

1
K 3 .996 .953 .850 .691 .485
5 .996 .953 . .850 .691 .485
00 .996 .953 .850 .691 .485

a/h=2, External
2 .4 .6 .8 .95

1 .999 .985 .946 .867 .710
K 4 .999 .98b .946 .866 .708
7 .999 .985 .946 .865 .708
o .999 .985 . 946 .865 .707

a/h=2, Internal

1 .999 .985 .948 .871 .716
K 4 .999 .985 .948 .872 .716
7 .999 .985 .948 .872 .716
00 .999 .985 .948 .872 .716
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Table 6.43 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.
Crack is at position C of Fig. 6.5, R/h=10, »=.3.

TWISTING

a/h=1, External

Ly/h .2 .4 .6 .8 .95
Ri/h

K3(0) 1 779 .523 .278 -.330 -5.23
K 3 .778 .521 .274 .337 -5.28
3T 5 777 .520 .273 .337 -5.27
+0 L7177 .519 .273 .339 -5.28

a/h=1, Internal
K,(0) 1 .780  .525  .281 -.323 -5.19
K 3 .781 .527 .285 .316 -5.16
3T 5 .781 .528 .286 .314 -5.14
+00 .782 .529 . 287 .310 -5.12

a/h=2, External
Ly/h .2 4 .8 .8 .95

Ri/h

K3(O) 1 .810 .586 .403 .006 -3.64
K 4 .808 .582 .396 022 -3.75
3T 7 .808 .582 .395 .023 -3.75
00 .807 .581 .395 .022 -3.74

a/h=2, Internal
K,0) 1 .811  .580  .410  .011 -3.53
K 4 .813 .594 .418 .028 -3.41
3T 7 .814 .595 .419 .033 -3.38
+0 .814 .596 .422 .039 -3.34
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Table 6.44 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position D of Fig. 6.5, R/h=10,
v=.3.

IN-PLANE SHEAR

a/h=1, External
Ly/b -2 4 .6 .8 .95

R, /h

1 .800 .636 .579 .492 .301
o 3 .799 .634 .576 .490 .301
5 .799 .634 .576 .490 .301
L .798 .633 .576 .490 .301

a/h=1, Internal

K,(00 1 .800  .635 578  .491  .301
- 3 .801 .637 .580 .492 .300
31 5 .801 .638 .580 .492 .301
0 .802 .639 .581 .493 .301

a/h=2, External
LO/h .2 .4 .6 .8 .95

Ri/h

K3(O) 1 .830 .690 .664 .630 .449
. 4 .828 .686 .659 .626 .448
31 7 .828 .685 .658 .626 .448
400 .827 .684 .658 .626 .449

a/h=2, Internal
K, (0) 820  .687  .B61  .628  .450

.831 .692 .666 .632 .449

1

K 4 .831 .691 .665 .631 .449
7
0 .832 .693 .668 .633 .451
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Table 6.45 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position D of Fig. 6.5,
R/h=10, v=.3.

OUT-O0F-PLANE SHEAR

a/h=1, External

LO/h .2 .4 .6 .8 .95
Ri/h

K,(0) 1 .99  .953  .850  .691  .485
i 3 .996 - .953 .851 .692 .486
20 5 .996 .953 .851 .692 .486
00 .996 .953 .851 .692 .486

a/h=1, Internal
K2(O) 1 .996 .953 .849 .689 .483
" 3 .996 .953 .851 .692 .486
20 5 .996 .953 .851 .693 .487
0 .996 .953 .851 .693 .487

a/h=2, External
LO/h .2 .4 .6 .8 .95

Ri/h
\

K2(0) 1 .999 .985 .948 .871 .716
K 4 .999 .986 .950 .875 .721
20 7 .999 .986 .950 .875 .721
+0 .999 .986 .950 .874 .720

a/h=2, Internal
K2(0) 1 .999 .985 .946 .867 .710
K 4 .999 .986 .950 .875 .722
20 7 .999 .986 .950 .876 .723

+00 .999 .986 .950 .876 .723
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Table 6.46 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.
Crack is at position D of Fig. 6.5, R/h=10, v=.3.

TWISTING
a/h=1, External
Ly/h -2 4 .6 .8 .95
Ri/h
K,(0) .780  .525  .281 -.323 -5.19

1
K 3 .778 .522 .276 -.334 -5.26
5 .778 .521 .275 -.336 -5.26

+0 777 .520 .274 -.337 -5.27

a/h=1, Internal
K;0 1 .778 523  .278 -.330 -5.23
X 3 .780 .526 .282 .322 -5.19
3T 5 .781 .527 .284 .319  -5.17
»00 .781 .528 .286 .314 -5.15

a/h=2, External
Ly/h -2 4 6 .8 .95

Ri/h

K;0) 1 .81 .50  .410 .01l -3.53
K 4 .809 .584 .400 .01 -3.70
3T 7 .809 .583 .398 .017 -3.71
+%0 .808 .583 .397 .018 -3.72

a/h=2, Internal
K3(0) 1 .810 .586 .403 .006 -3.64
X 4 .813 .592 .413 .014 -3.52
3T 7 .813 .592 .415 .019 -3.48
+ .813 .594 .417 .027 -3.43
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Figure 6.1 Comparison of the mode 1 LSM with
results from Ref. [34] for the normalized SIF
along an axial, internal, semi-elliptical surface
crack in a pressurized cylinder. Crack surface
pressure is taken into account, v=.3.

265



INTERNAL PRESSURE
AXIAL CRACK, Ry /h=10
; Lo/ h=.6

LSM
o Rey. [40)]

Figure 6.2 Comparison of the mode 1 LSM with
results from Ref. [40] for the normalized SIF
along an axial, internal, semi-elliptical surface
crack in a pressurized cylinder. Crack surface
pressure is not taken into account, v=.3.
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2 1 Circumferential internal

surface crack, a/h=2
Cylinder, R/h=10
| Tension Lo/h=. 8

. 95

(Ew)/(aot)

v/a

(Ew)/(aoy)

y/a

Figure 6.3 OQOut-of-plane displacement w(0+,y) as
measured from y=0 in the deformed position for a
cylinder with a circumferential, external, semi-
elliptical surface crack subjected to either

membrane loading (am=ﬁx/h) or bending (ab=6ﬁ/h2),
v=.3.
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Figure 6.4 Out-of-plane displacement w(0+,y) as
measured from y=0 in the deformed position for a
cylinder with a circumferential, internal, semi-
elliptical surface crack subjected to either

membrane loading (amzﬁx/h) or bending (ab=6ﬁ/h2),
v=.3.
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Figure 6.5 Geometry of the toroidal shell.
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CHAPTER 7
Conclusions and Future Work

The severity of the underlying assumptions of the line-spring
model are such that verification with three-dimensional solutions is
necessary. Such comparisons, in this study as well as in others, show
that the model is quite accurate, and therefore, its use in extensive
parameter studies is justified. It was shown in Chapter 4 that for
practical crack length to plate thickness ratios of about a/h=1, a
plate theory that includes transverse shear deformation gives better
results than the classical theory. The higher order plate theory does
not seem to be necessary for a/h greater than about 2. When using the
LSM with shallow shell theory it is more important to include
transverse shear effects, because this theory is asymptotically
correct for short cracks. The validity of the shallow shell theory
for long cracks is not fully known, however, for surface cracks of
practical dimensions it is expected to be accurate. Comparison of LSM
solutions obtained in this study with three-dimensional solutions for
semi-elliptical internal cracks in cylinders are also quite accurate.

It is still not understood why the model works as well as it does
close to the crack ends. This is a rather curious problem. Since the
stress intensity factors are defined by the model to be in a plane
perpendicular to the plate surfaces, and not perpendicular to the
crack front as they should be defined, the results at the ends of a
semi-elliptical crack should be poor, but they are not. Several
factors apparently act to cancel each other out. If these factors are
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understood, and separately accounted for, the extension of the model
to other crack problems will be better achieved.

This has special importance in the proposed skew-symmetric or
mixed-mode line-spring model investigated in this study.
Unfortunately, there are no three-dimensional solutions for
verification; only the success of the symmetric case can give
confidence that the results will be of some use. There are additional
assumptions involved that do not have to be made in the mode 1 case.
The {first restricts the model to coplanar crack growth. The results
may be considered as upper bounds for materials which have a weak
cleavage plane. O0f course, cracks along these planes would be of
concern. The next assumption relates to the previously discussed
problem in mode 1 which involves the crack front curvature and the
plane in which the SIF is defined. Although in the mode 1 case this
problem is somehow overcome, this effect is more critical in the skew-
symmetric case because there are two stress intensity factors as
opposed to one for the symmetric case. To illustrate this problem,
consider that for a semi-elliptical crack in which a primary mode 3
loading in the center will become a primary mode 2 loading towards the
ends, and vice versa. This is not observed in the results. There is
no built in mechanism in the model that accounts for this, (but there
isn’t for the mode 1 case either). Perhaps the combination of K2 and
K3 in the following generalized energy release rate equation is more

accurate than the individual K values.

2
d 1y { 2 .2 1 .2
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If the model can be verified, and improved, the shell with a crack at
an arbitrary angle with respect to a principal line of curvature would
be an important problem for future research.

Investigations into the endpoint behavior of the line-spring
nodel have led to important conclusions about the ability of the model
to predict stresses in front of the "crack tip". This also has
applications to the crack interaction problem, and to possible uses of
the model to study crack propagation in the length direction, in
addition to the depth direction. It was found that only when the
crack profile behaves like

§ = Eo(l—t2)1/4 (7.2)

near the endpoints, does the numerical procedure easily converge.
However, for rectangular profiles, convergence is acceptable. For the
semi-ellipse, it is not.

An‘ important application of the LSM was to solve the contact
plate bending problem. Here the flexibility of the model to allow for
any crack shape is exploited. Future work in this area includes
predicting crack shapes for mode 1 crack growth assuming a constant K
condition. Solution of this problem would involve the same iterative
procedure that was used for the contact case.

It should be emphasized that all solutions presented in this
study correspond to the perturbation problem, where constant loading
along the length of the crack has been assumed. To make use of the
results, the solution to the uncracked shell must first be obtained

along the plane of the crack. Then superposition principles apply.
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There may be cases where the solution to this problem varies
considerably along the crack length, and studies into this effect may
be necessary. This may be done in a straightforward manner.

The use of displacement quantities as unknowns in the formulation
of the problem leads to strongly singular integral equations, rather
than singular integral equations which result from using displacement
derivatives. Although it is more convenient to deal directly with the
displacement quantities, this formulation introduces log singularities
into the equations which require more asymptotic analysis in order to
have acceptable numerical convergence. In this study it was necessary
to evaluate these log integrals in closed form. Sometimes log terms
of the form (t—y)nlnlt-yl can be extracted from the Fredholm kernel
and calculated in closed form to slightly improve convergence, but in
general it is not worth the extra effort. The collocation method of
solving the integral equations was found to be better and more
convenient than the quadrature technique. It has been my experience
that orthogonal polynomials should be used as fitting functions when

using the LSM as opposed to simpler functions such as power series.
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APPENDIX A

Non-Dimensional Variables and Useful Formulae

A.1 Non-Dimensional Plate and Shell Quantities

If 2z
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X = xl/h , Y = x2/h , Z = x3/h ,

u=u =u = ulD/h ) ﬁx =, = pl y W= U, = ug = u3D/h
v=u =u = u,n/h py =u = f,,

oizoiD/E » a=9q/E,

N =Ny /() , N= Nyo/(hE) , N, = Npp/(hE) ,
M =M /(%) , M =M_/(h%) , N = M_/(b%E)
xX 11 ’ Txy 12 ' Tyy 22 !
v, = 12(1+V)V1/(5hE) , Vy = 12(1+u)V2/(5hE) )

4 -1 2 1
AT =19q =12(1—V),l&=‘5(1—_u)',
4 4 2 4 4 2 4 4 2

o= 2tamp? L g = xter)?, ol = ter)? .

.2 Some Useful Properties of Modified Bessel Functions

K (2) = 2 [K,(2) - Ky(=)]

d _

5 K@ = K@ =% [0 - K@)

d 2 - 2
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dt = dt dg - Psien(t-v)g;

(A.

(A.

(A.

(A.

(A.

(A.

(A.

~~

(A.

A.

1)

2)

3)

4)

5)

6)

7)

8)

9)




For small z,
Ko(z) ~ -1n(2/2) - 7, - (3/2)%1n(2/2) + 0(s%) , (A.10)
Ky(z) ~ 2/z° -1/2 -1/2(5/2)%1n(s/2) - 1/2(2/2)%(7,+5/4)

- 1/6(z/2)41n(2/2) + 0(zY) (A.11)

vhere Euler’s constant, 7, = .57721566490153. . ..

A.3 Chebychev Polynomials

0f the first kind: Tn(x) = cosnf , 0 = cos‘lx , (A.12)
0f the second kind: Un(x) = §i§§§311Q , 0 = cos Ix . (A.13)

Some expressions needed to integrate
+1 .
I (r—s)lUj(r)jl—r2 lnlr-sl dr , i=1,2,3 , (A.14)
-1

are,

1
() = 5 [U,@ ¢ 4,0

e L

2
U, () [Uj+2(r) r 2 () + Uj_2(r)] ,

00 |+=

3
U, (r) [Uj+3(r) S SHCREANOR Uj_3(r)] . (A.15)
An important relation between Chebychev Polynomials of the first and

second kinds when using the line-spring model with displacement

derivatives as the unknowns is,

T (x)
’d 1 2,1/2
I EI%;E;T§§ =0 (1-x%) / Un—l(x) + constant . (A.16)
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The following integrals are useful for calculating stresses ahead of

the crack tip,

1/2
+1 U (t)(1-t
I_l )i t R dt = '["‘("2-1)1/2]'”1 , x> 1, (A7)
+1 Tn (t) [x_ (x2_1) 1/2111
dt = - , x> 1, A.18
I-l (1—t2)1/2(t—x) (x2-1)1/2 ( )
+1 U_(t) 1-t%) /2 .
= —(n+ /2] 7|4
I-1 (x-t)2 d = (n 1)[ (1) ] [1 1/2]
Ixl >1 . (A.19)

A.4 Finite-Part, Cauchy Principal Value, and Log Integrals

Except for the log integrals, these expressions are copied from [67].

}+1 (1-9° @) (@) )

— dt = reot(ax) (1-x) 2 (1+x)Pp_(2:P) () -

-1

a+p +Bs _
A P, aap; 1a, 19,
@>-1, p>-1, a#0,1,2...) , (A.20)
+1 P (t)
f dt = -29_(x) , (A.21)
-1 -X
J(+1 T (t) 4 0 ) (h.22)
t = , .22
1 (1-t )1/2(t—x) T
1 U_(t) (1-t%) /2
}—1 — dt = 1T () (A.23)
+1 P _(t) _2(n+1)
)( g dt = 2 =5 . xQ (x) - Q,;(x) ] (A.24)
-1 (t-x) l—x
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+1 T (¢) el "
%_1 (1_t2;1/2(t_x)2 dt = ;{;5 _25_ U (x) + 25— U _o(x) ]
(A.25)
+1 U_(t) (1-t 2)1/2
j dt = @DV -, (A.26)

-1 (t—x)

where Pn(a’p)(t) are Jacobi Polynomials, F(a,b;c;z) are Hypergeometric
functions, Pn(t) are Lagendre Polynomials, Qn(t) are Lagendre
Polynomials of the second kind, and I'(a) is the gamma function.

Some integrals that can be used with Eqn. B.27 are:

+1
1
= _dt = 1n [ Lx ] ’ (A.27)
+1
1 -1 1
j(-1 (t-x)2 dt = 7% - Tax (4.28)
f+1 1 dt = 0 (A.29)
1 (132 (ex) '
§+1 1 d
£=0 , A.30
-1 (1-6H1/2(4 )2 5
+1 2,1/2
{ (1 -t ) / dt = -1x (A.31)
+1 1/2
f a2y, (A.32)
-1 (t- x)
J(+l 1-t 1/2d _ J—[ 1 [~ ]
. igj;l——— t=-2027|1-3 |-§— In(B) | (A.33)
+1
1-t 1 1.2
;_1 iz—;i——— dt = -Iﬁ“[ st 4 |Ij; 1n(B) ] , (A.34)
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{+1 1 it = 1n(B)
-1 (l—t)l/z(t—x) J1-x

+1
1 _d2 [ -1 ;|_2_'
f 17z, 29 =15 [ T+ 3l ) |

-1 (1-t) % (t-x)

’

where

1-x
1- J 2

There are similar formulas for power series.

1. 1+2
1 (M 5-1,, .2,1/2 _ k-1
1 I_lt (1-t3 1210 14-y1 dt = Eé; ay<!
i+1
k-1
EZ: b,y ,
k=1 &

+1, j-1 1/2 j _
1 % t37 (1t ) dt = :i: °k’k 1

B =

1 }+1tJ 1(1 ¢ )1/2

dt

-1 (t—y) k=1
where
pftﬂq
by = — ‘—kfa , k=1,2,...,5+1, for j = 1,2,3,...
ofx r(ik3 and j-k odd,
bk =0 , j-k even ,
) = kbk+1 , k=1,2,3 ,
-b
ay = —E¥fl , k=2,3,4 ji+2 ,
a,l =0 , j=2,4,6, ’
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. i-1 k-1
- (j-2)! (-1) o1
"1 2j_l[i:§]' [iil]' { =1 K 1@ }
2)° L2) j =3,5,7,
a; = -(1/4 + 1/2 1In(2)) , j=1 . (A.43)
And for the weight in the denominator,

+1 e n-1 K
f 3172 dt = > dx (A.44)
-1 (1-t9) /7 (t-x) k=0

dk =0 , n-k even,

d, = I?“—-E[fé%l n-k odd (A.45)

k I.[n—lwl] ’ ! ’
2

1 n n-2
1 (7 t k
= dt = > exx' (A.46)
')(-1 (1-t5 /2 (4 x)2 ko &

e, = 0 , n-kodd ,

r[n—k—l]
2
e, = I;ﬂ———;ji—~ (k+1) , n-k even . (A.47)
r(%3Y)

For integration of logs with Chebychev Polynomials [76] (with
corrections) of the second kind that are typical when using the

strongly singular formulation,
+1 3
[ Uj(r)Jl—r lnlr-sl dr = V() , -1¢s €1, (A.48)
-1

where

[Tst) ) TJ+2(S)

Vj (S) j j+2 ’ j

ol
v
o

vol4
]
o

[-s2 £ 1/2 + 1n2] ,j (A.49)
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APPENDIX B

Finite-part Integrals

Singular integral equations result naturally from the formulation
of two-dimensional crack problems in mechanics when the crack opening
displacement derivative is used as the unknown. The theory is well
established due principally to the work of Muskhelishvili [78]. If
the displacement is used as the unknown, the resulting singular
integral equation takes on a new form and is referred to as strongly
singular. To illustrate the differences consider the two-dimensional,
half-space crack problem of Fig. B.1 with boundary conditions given by
Eqns. B.1-4. This simple geometry produces all of the important

mathematical features of the geometries studied in this dissertation.

} vy

oxy(O,y) =0 (B.1)
Uxx(O,y) =0 (B.2)
_‘Eg - X aij is bounded at infinity. (B.3)
vix,y) =v(y) =0, x<a, x2b
oy(x,O) = -p(x) , a<x<b. (B.4)
Figure B.1

The resulting integral equation is
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b b
f %§§l dt + f p(t)K(x,t) dt = - Iiéiﬁl p(x) , a<x<b , (B.5)
a a

where the non-singular Fredholm kernel,

2

K(x}t') = -1 + 6x 2 - 4x 3 ) (B.G)
t+x  (t+x) (t+x)
and ¢(t) is the unknown derivative of the crack opening displacement

v(t), p is the shear modulus of the material, and k£ is defined in

terms of Poisson’s ratio v for both

= 3V
plane stress: k=170
and for plane strain: £ = 3-4v . (B.7)

The first integral in Eqn. B.5 is singular and is interpreted in
the Cauchy principal value sense, specified as such by a line through
the integral sign. One way to define a Cauchy principal value

integral is as follows,

e+0

b X-€ b
[$8) 4 - lin { I $08) 4 . f 808) 44 } (B.8)
a a X+€

By using the standard interpretation of an integral as the area under
a curve, note that individually the integrals on the right hand side
of Eqn. B.8 do not exist in the limit, but when added together the
"infinite areas" will be of opposite sign and will cancel giving a
finite result. When the problem in Fig. B.1 is formulated by using
the displacement v(t) as the unknown instead of the derivative ¢(t),

the resulting integral equation is found to be,
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b
{—‘-’—(ﬁ)—dm[v(t)['@%%ﬁ]dt_ —(M p(x)
S L
adx<b , (B.9)
where the {first integral no longer exists in the Cauchy principal
value sense and requires a special interpretation. Throughout the
dissertation these integrals are identified by a double dash through
the integral sign.

Consider a direct integration by parts of the integrals in Eqn.

B.5.
b
I $(t)K(x,t) dt = v(t)K(x,t)lb - j v(t)[ Ql%%& ] dt ,  (B.10)
a
a a
b
J[%%ld”%%q I—v(ﬂ‘dt (B.11)

(t)

Here again the same "strongly singular" integral appears. For
Eqn. B.11 to be an equality, this integral must be finite just as it

must be in Eqn. B.9, so we write,

b
J[ %%1 dt = :—%H )( (_ZEQ_ dt . (B.12)

Note that Eqn. B.9 is obtained if Eqns. B.10,12 are substituted into
Eqn. B.5. The integrated terms cancel for either an internal crack
(0<a<b) where

v(a) = v(b) =0, (B.13)

or for an edge crack (0=a, 0<b) where
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v©o) [ L+ Kkx0 | =0, vi)=0 . (B.14)

The fact that a special interpretation of the strongly singular
integral in Eqgns. B.9,12 is necessary apparently reveals that a
"mistake™ has been made in the derivation of each equation. This
nistake in Eqn. B.11 is corrected when Eqn. B.8 is used when

integrating by parts as follows,

b
[0 0l ([ 2 )

b
S L e )

X+€ (t—x)
X—€
(e (e ]

b
L [ ) g ]} (B.15)

xre (b )

From Egns. B.12 and B.15 we obtain a result similar to Eqn. B.8 but

for strongly singular integrals:

oo (e ] a0y )
a

[ o)

(B.16)
goe (607

¥ith this definition Eqns. B.9,12 are correct. Consider for example

v(t)=1.
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: - b
1 (c SEX i B SN ) P
- Bt LBkt eas
i (8.19)

Note that this would be the result obtained if Eqn. B.17 is integrated
directly as though the singularity were not present.

Integrals of this type were studied by Hadamard in 1923 [66] and
were referred to as finite-part integrals, a name which describes Eqn.
B.16 where the infinite part is subtracted out. For more information

on finite-part integrals and their use for problems of the type

studied in this dissertation see Kaya [67].
To derive a property that is more wuseful than eqn B.16 for

evaluating finite-part integrals, differentiate Eqn. B.8 with respect

to x as follows.

b X-€ b
| 0 [ v(t) _ 0 lim { I v(t) J v(t)
: Ox J t-x dt = Ox €0 t-x dt + t-x dt } : (B.20)
a a X+€E
Next differentiate on the right before the limit is taken and before
integration,
b X-€
8 [ v(t) _ lim {{ v(x-€) J v(t)
T Ox J t—x =dt= e (1T -€ * 2 dt }
(t-x)
a a
b
+ [ -v(x+€) + I v(t) dt ]} . (B.21)
€ 2
xre (E7%)
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From Eqn. B.16 we conclude,

% —1191- dt = =2 !131 dt . (®.22)
(t ) ax —

a
By expanding v(t) near the point t=x, another method for the

evaluation of finite-part integrals is obtained,

b
% v(t) dt = j(v(t)dvjx) +(t- X)V’(x))+(V(X)+(t-X)v (x)) 44
a (b x)? a (t-x)” (B.23)
b
_ I V(t)—V(X)-(’;-X)v ) 4 . v(x))( dt
a (t-x) s (t- x)2
b
cvf Lo, (B.24)
a
where
vi(x) = 3: , (B.25)
If
v(t) = £(t)w(t) , (B.26)

% (t)wgt) dt = I f(t)-f(x)- (t x) £’ (x) w(t)dt + f(x)% w(t) 5 dt
a2 (- x)? (t-x)* (t-x)*

a
b

1 (of e gy (B.27)
a

See Appendix A for finite-part and Cauchy principal value integrals

with various weight functions and with some commonly used forms of

f(t).
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APPENDIX C

The Compliance Functions

As indicated in chapter two, the mixed-mode line-spring model
requires stress intensity factor solutions of the edge cracked strip
for each of the five loadings shown in Fig. 2.3. Three separate two-
dimensional problems must be solved to obtain these results. The
tension and bending solutions come from symmetric (mode 1) loading,
out-of-plane shear results come from skew-symmetric (mode 2) loading,
and the anti-plane (mode 3) results are obtained from twisting and
from in-plane shear 'loading. Note that in-plane for a plate

corresponds to out-of-plane for plane strain and vice versa.

C.1 Governing equations for in-plane loading.

The governing equations for the mode 1 and 2 cases are from plane
elasticity where all field quantities are independent of =.

Equilibrium of the solid requires,

aaxx arx
Ox M dy =0, (C.1)
arx o0
ax + ay = 0 . (0-2)

For plane strain, Hooke’s law relates stresses to strains in terms of

the material constants p are v which are respectively the shear

modulus and Poisson’s ratio,

2
o, = ij_‘g; [(1-v)e, + ve ], (C.3)
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ayy = 1—'f’~‘2‘7 [(1-1/)45y + Vex] , (C.4)

= by (C.5)

T .
xy xy
The plane stress solution can be obtained by replacing v by v/(1+v).

The strain-displacement relations for linear elasticity are,

- Ou = Ov _ Ou dv
€x " Bx ’ ey T oy’ Txy = 3y 8x ° (.6)

where u and v are the x and y components of displacement respectively.
If the relations in Eqn. C.6 are substituted into Eqns. C.3-5 and
if the resulting expressions are then substituted into Eqns. C.1,2,

Navier’s equations for the displacements are obtained:

2 1 3[3u . v

Vo + 120 3xldox * Byl = o, (c.7)
2, , 1 0f8u  dv] _
Vv + 1-2v Bylox * ay] =0 . (C.8)

The geometry of the cracked strip and the method of superposition
are shown in Fig. C.1. Any field quantity on the left of this figure,
say f(x,y), is given by,

f(x,y) = fl(x’Y) + f2(x»Y) ’ (c.9)

vhere the subscripts correspond to the geometries on the right. Eqgn.
C.9 is used for all relations including the boundary conditions. The

preceeding information will be used for mode 1 and for mode 2.

C.1.1 Mode 1.
The boundary conditions for the symmetric problem are:

T .(x,0) =0, (€.10)

<
~~
o
«
N’
Il

0,
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i
o

Txy(h’Y)
oxx(o:}') =0,
oxx(h)Y) =0, (C.11)

v(x,0) =0, x<a , b>x ,

ayy = -p(x) , a<x<b . (c.12)

To solve problem 1 of Fig. C.1 we introduce the exponential

Fourier transform defined as follows,

1) = 37 | T0me o (.13)

+00

[ fe,y)eiP ax . (C.14)

1(8,y)

When the Fourier transforms of Eqns. C.7,8 are taken, the following

ordinary differential equations result,

g—! - p2u + 1_;y —pzﬁ + 1ﬂ§! ] ) (C.15)
y y

2- _ - a2-

§~§ L Ij%; [ 120 . Q—% ] . (C.16)
Oy dy 9y

These equations are solved for u and v, inverted according to C.13 and

then substituted into Eqns. C.3-5 to obtain,

_ meen = [ {La@ |

[ 450 + yag® |77} P gp (¢.17)

+00

N = g L,T%T{[‘Al(ﬁ) - (g7 + P e
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(A, - (TﬁT - A 0]t P1Y) ifx g5 (c.18)

0y X5Y) =§ {[ 24, (p) + A (p)(hﬂl - 2y)] o 1Aly

[-245(p) - A4<p)(%;% o] Y g (¢.19)
Oy on) = 38 [ “a{[2, 0 + 4 B G3t + 2] P
[245() + & (p>(-};f 2] P} P ap (¢-20)

+00

Ty oY) = 35 _m{[—2IpIA1(p) . Az(p)(l—m—2lp|y)] 1By,

(2181a5(0) + A, -re2ipiy)] &P} P ap  (c.21)

where £ = 3-4v.

For bounded behavior at infinity
A3(p) = A4(p) =0 . (C.22)

For problem 2 of Fig. C.1 there is symmetry which allows the

following Fourier sine and cosine transforms to be used,

u,(x,a) = Jouz(x,y)cosay dy , (C.23)
uy(x,) = J: 5, (x,a)cosay da , (C.24)
vy(x,0) = J:vz(x,y)sinay dy | (C.25)
v, (x,y) = j: v,(x,a)sinay da . (C.26)
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After performing an identical analysis as was done with problem 1, we

obtain,
uy(x,y) = 2 j:{[ B,(2) + By(a) (5 + x) e -
[ By(@) - B,(@) & - x) |e™cosay da , (c.27)
vy(x,y) = 2 j:{[al(a) + xB,(a) e
[By(a) + xB, (a) | ™ }sinay da , (C.28)
0y (x,y) = 2L I:a{[ZBl(a) + By(@) (12 & 2x)| &% 4
[2B5(2) + B,(2) ( L2 + 20)] e™cosay de , (C.29)

g

2YY(x’y) = ’2% I:a{[—2Bl(a) + Bg(a)(ggﬁ - ZX)] e X

[-2B5(a) - B, (2) B + 20)| e™cosay da , (. 30)
oy O67) = 2 Io{[—ZaBl(a) + By(a) (1-5-2ax) | &% 4

[20B,(a) + B, () (1-k+20x) | &™}sinay da . (c.31)

Now the boundary conditions, Eqns. C.10-12 are applied making use of

Eqn. C.9. First Eqn. C.10 relates Al(p) to Az(p) as follows,

1-«x
AP = 211 22(A) - (€.32)
Now introduce a new unknown,

v(x) = v(x,0) ,
and express A2(ﬂ) in terms of it.
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. +00 . . b .
AP = BL [ y(eyetPlay = HL2 [y (4)elflar . (C.33)
a

1+x —®

The unknowns in the problem are v(x) and Bi(a), i=1,...,4. Eqgns. C.11

produce a linear system of four equations that determine Bi(a) as

follows,
41.7..
B.(a) = » L2, (C.34)
i s A
i=1
where
A= e28h | (40?2, gy 4 o20R (C.35)

15y = -2 + [-40®h® - 20h(s-1) + (5-1)] ,

T1g = o2l [2ahk + £ - 1] + ok [-2ah - & + 1] ,

2ah 2,2

= -(x+1)e + [42”h” + 2ah(x+1) + (k+1)] ,

- oh [-2ah& + £ + 1] + e [_2ah -« - 1] ,
T14

To1 = 2¢1e2ah + (4a2h - 2a) ,

Tog = e2h [—4a2h - 2a] + 2ae ™D ,

Toz = 200270 _ (4a2h + 2a) ,

Tog = e2h [4a2h - 2a] + 2ae" 0 ,

131 = [—4a2h2 + 2ah(x-1) + (x-1)] - e—zah(n—l) ,

ah

Tag = e [20h - (s-1)] + ¢ ®P[-20hs + (-1)] ,

T33 = [-4a%h% + 2ah(x+1) - (k+1)] + (x+1)e 20D
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s [-2ah + (k+1)] - eoh [2ahe + (x+1)] ,

T34
Ty = [4a2h + 2a] - 2ae~22h ,
Ty49 = _20eP . [—4a2h + 2a] e ah ,
T3 = [4a2h - 2a] + 20¢ 280 ,
Tgq = 2220 [-4a2h - 2a] e-ah ) (C.36)
and
-1 b -at
I1 = 3(1+%) (1-at)e " "v(t) dt ,
1 b ~a(h-t)
I = Z(+R) [1-a(h-t)]e v(t) dt ,
a
-1 b -at
13 = 3(1+n) (2-at)e “"“v(t) dt ,
1 b -a(h-t) |
I, = 50 [" 12-am-0)e v(t) dt . (C.37)
a

The mixed boundary condition gives a singular integral equation for

v(x), a<x<b.

b b
1, . _ ~x(1+K)
}av(t){(t_x)z Kg(x,t)} dt ja Kpy (x,6)v(t) dt ” ?éf%si

where

K.o- .1 . 12xt 1 , 12(h-x) (h-t)
0 )2 )t (2hx-t)? (2h-x-t)4

, (C.39)

and

299



KIl(x,t) = I:[ Sl(x,t,a) + Sl(h-x,h—t,a)

+ 8,(x,%,8) + S,(h-x,h-t,a) ] da , (C. 40)

~(x+t)a . _
Sl(x,t,a) = g——z———— {e 2ah[—2(13xt,+¢12(3x+3t)-5¢z]+8a5h2xt'.

—12a4h2(x+t)+a3[2hx+18h2+2xt+2ht]+a2[—3x—3t—6h]+5a} , (C.41)

S, (x,t,8) = QESZiEZf {e72b]_a (x-t)-3] +a®[-4h2tdnt]
va2[6b%-6hx+6ht] va[x-t-10n]+3} (C.42)
A= e8| (4022 L g) + o 720h (C.43)

For an edge crack a=0. The loading for tension is,
p(x) = 01 ’ (C.44)

and for bending,

p(x) = g%g [ % - x ] . (C.45)

C.1.2 Mode 2.

The boundary conditions for the skew-symmetric case are,

o, (x,0) =0, (C.46)
Tey(®¥) =0,
Ty (oY) =0,
0. 0:¥) =0,
o (hy) =0, (C.47)
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u(x,0) =0, x<a , b>x ,

T*Y = -p(x) , a<x<b . (C.48)

The symmetry of problem 2 in Fig. C.1 for the above boundary

conditions suggests the following Fourier transforms of the

displacements,

52(x,a) = Imuz(x,y)sinay dy , (C.49)
0
2 (-

u2(x,y) =3 Iouz(x,a)sinay da , (C.50)

v2(x,a) = Jovz(x,y)cosay dy , (C.51)
2 (=

vy(x,y) = 2 Iov2(x,a)cosay da . (C.52)

When these expressions are used to solve C.7,8 the result is,
uy(x,y) = 2 IZ{“[ 0y (@) + Cy(a) (5 + ) ]e—ax +
[ c5(@) - ¢,@ & - x) |e™]sinay da , (C.53)
vo(x,y) = % I:{[cl(a) + sz(a)]e_ax +
[05(a) + xC,(@)]e™cosay da, (C.54)
Og () = 22 J:a{[ZCI(a) v Oy (BE 4 29| &7 .

|205(@) + 0 @) (125 » 2x)| e™}sinay da , (C.55)
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Ogyy (1Y) = 2 I:a{[-zcl(a) + Cy(a) (35 - 2x)] e .
[-265(2) - ¢, (@) EE + 2x)] e™}sinay da , (C.56)
T2xy(x,y) = 25 Io{[—2a01(a) + 02(a)(1—n—2ax)] e IX .

[Zacs(a) + 04(a)(1—&+2ax)] eax}cosay da . (C.57)

The solution to problem 1 in the superposition of Fig. C.1 is the same

as for mode 1 (Eqns. C.17-21). Eqn. C.46 gives,

M = S5 A0 (¢.58)
After defining

u(x) = u(x,0) (C.59)

as a new unknown we can express,

2181 (*" | 2181 (° i
AP = ?E?€7 I-wu(x)elpx dx = ?;;57 Iau(x)elpx dx . (C.60)
The Ci(a) are determined from Eqns. C.47 to be,
41.q..
C,(a) = 2, (C.61)

=1
where 7ij and A are the same as for mode 1 (Eqns. C.35,36) and the

Ij’s are found to be,

1 b
1 7 2(1+x) a

ate_atu(t) dt

b
I, = ETI%;T I a(h—t)]e_a(h_t)“(t) dt
a
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b
I, = ETT%ZT Ia (1-at)e %u(t) dt

-a(h-t)

.
L, = 5om ja [1-a(b-t)]e a(t) dt . (C.62)

The mixed boundary condition, Eqn. C.48, gives a singular integral

equation for u(x), a<x<b.

b b
fumf{—L5 + k0 at + [ K tue) de = AL 51y
a (t-x) a

4 (C.83)
where
Kc __ 1 5+ 12xt4 _ 1 5 + l2(h—x)(h—2) (C.64)
(t+x) (t+x) (2h-x-t) (2h-x-t)
and
00
Kpp(x,t) = Io[ S4(x,t,a) + Sy(h-x,hit,a)
+ S4(x,t,a) + S4(h—x,h—t,a) J da , (C.65)
-(x+t)a ,
Sa(x,t,a) = 9——3———— {e 2ah[—thsxt'.+l12(x+t:)—a]+8a5h2xt
—4a4h2(x+t)+a3[2hx+2h2+2xt+2ht]—a2[x+t+2h]+a} ) (C.66)
(t-x)a ¢ oan 3[,, 2
S4(x,t,a) = Qg__K___ {e @ [a(t—x)+1]+a [4h x—4hxt]
+a2 [—2h2—2hx+2ht] +a [—t+x+2h] —1} , (C.67)
A= 22 | (40?2 4 9) 4 o720R (C.68)

For an edge crack a=0. To obtain the mode 2 stress intensity factor

for parabolic shear loading we let
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P(x) = 05(2/h)*x(b-x) . (C.69)

C.2 Anti-plane shear.

The governing equation for anti-plane shear is,

Vw=0, (C.70)

where w is the z-component of displacement. The stresses and strains

can be written in terms of w,

ow ow
1'xz = ,‘-a-; ’ 1‘yz = pa—y ’ (0.71)
- v _ v
Tez = 3x ° 7yz = 3y (C.72)

All other components are zero. Again the superposition of Fig. C.1
together with Eqn. C.9 are used. The general solution for w(x,y) in

terms of the Fourier transforms of Eqns. C.13,14 and C.25,26 is,

wxon) =55 [ M@ P ap

2 I:[Bl(a)e‘“x + By(a)e™] sinay da . (C.73)

There are three unknowns in the above equation and the following

conditions will determine them,

r ©y) =0, (C.74)
sz(h,y) =0, (C.75)
Tyz(x,O) = -p(x) , a<x<b ,

w(x,0) = 0, x<a, x>b . (C.76)

After defining

304




400 = 32| o (c.77)

Eqn. C.73 becomes,

+00

40 = 35 [ i (e ap (c.78)
Inversion (Eqns. C.13,14) and Eqn. C.76 give,
+00 . b .
g (0 = [ 4P ar = [peretPt a (C.79)
—00 a

In order to apply boundary conditions C.74.75, Eqns. C.71,73 and 79

are used to express,

2¢4(t)
sz(x,y) 21 2 dt

a y +(t- x)
2 00
+<E I [—aB (a)e ™ + aB (a)eax] sinay da . (C.80)
LRI 1 2
Eqns. C.74,75 give the following two inverted equations,

B (a)e ™ - B ()™ = L [ pe) e @B Pap - 1, (C.81)

1 b -at
B,(a) - By(a) = i Ia gt) et = I, , (C.82)
where the following integral has been used,

e-a(h—t) )

I —YL‘“’Y—d =2 (C.83)
Oy +(h t)
The solution is,
Ie ™1
-1 2
Bl(a) = ~oah , (C.84)
-e +1
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B,(2) = % , | (C.85)

where I1 and 12 are defined in Eqns. C.81,82. Next we apply the mixed

boundary condition C.76. Eqns. C.71 and C.73 must be used to express

. b +00 .
1i 180 -1p1 if(t-x
Ta000) = p() = 110 3 ja¢(t)j_w-1—%— e 1Py (iP(tX)gp gt

. b o
lim g J¢(t)Jo% {_e—a(x+2h—t)+e—a(x+t)_e—a(—x+2h—t)+e-a(—x+2h+t)l da

y*0 7 C.86)
where
D = 1-¢ 280 (C.87)
After using the following integrals,
+00 .
I -il%l e—lply elp(t—x)dp = —%12:51—5 ) (C.88)
- y '+ (t-x)
00
IO% {e—a(X+t)—e_a(_X+2h_t)} da = 5% cotiiéﬁll , (C.89)
Eqn. C.87 becomes,
b
1 t -t -1
p J ¢(t) { 5% [cotizéﬂll - cotiEEElI } dt = u p(x) . (C.90)
a

This kernel is equivalent to the following,

t -t 1
5% [cotizéﬁll - cot(xzﬁ)'] = Tox (Cauchy kernel)
v X cotdiXztlT (generalized Cauchy kernel)
2h 2h
1 -t
Al ﬁﬁcotizﬁﬁll (Fredholm kernel) . (C.91)

This same problem formulated in a different way has been solved in
closed form (see [77]). The solution for an edge crack is,
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sin(52) +a g(7) J1-k2sin2(§§)

T . (X,y) = = dr ,
yz 2h 2 _ .o X
Jsin2(%§)—sin (%%) 2 SInZh(T x) (€.92)
where
g(x) = g(-x) , (C.93)
and
k= (sinf®)! (C.94)
The stress intensity factor is defined as,
1
ky = a 12(x-2) 7,5 %:0) (C.95)
so
2 .2 17a
+1 g(at) |1-k“sin”(57t)
k, =42 | b T2 ‘ 2h ™ 4¢ (C.96)
3 hi2r 2h A
-1 sing(t-1)
2h
For in-plane shear,
g(x) = 04 ’ (€.97)

SO

k {——————-—““
3 = _*__26_ tan(%() , E = a/h . (0.98)
04Ja

Because of this simple expression @y (Egn. 2.27) can be determined in

closed form,

-4 x
@y = T(-1) ln[cos(ﬁf)] . (C.99)
For twisting,

g(x) = E%§ [2- ], (C.100)
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SO

;g“ - |;% tan(3¢) { I sin_ t dt } . (C.101)

C.3 Edge Crack SIF Curve Fitting

The five solutions are listed in table C.1. In addition to the
solutions required by the line-spring model, constant out-of-plane
shear (06) is also included.

The line-spring model requires stress intensity factors at any
value of § = a/h, so a curve is fit to each solution appearing in
table C.1. For mode 1 the asymptotic analysis of Benthem and Koiter,
[65] suggests that as § approaches 1 the stress intensity factor goes

to infinity with a power of 3/2. Therefore for gl(f) and g2(§) we use

12
__ 1 koL
g; () = oI Eié C. &, i=1,2. (C.102)

For all other cases a 1/2 power is used,

8

1
- — C
o 5

Although the singular behavior for mode 2 seems to be the same as for

k

gi(g) ikf ’ i=3,4,5,6. (0-103)

mode 1, (see Eqns. C.38,39 vs. 63,64), the form given in Eqn. C.103
produced a better fit than did 102. For twisting and in-plane-shear
the form of 103 is correct as can be seen by Eqns. C.98,101. The Cij
are given in tables C.2,3. These curves reproduce the numbers in
table C.1. The most difficult curves to obtain and to fit are the

mode 1 curves. The limiting values for £ approaching 1 are given in
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[65] to be 1.122 and .374 for tension and for bending respectively.
The curve given by Egn. C.102 produces 1.1229 and .3735 which shows
both good data and a good curve fit.

For reference the compliance curves that have been used in the
literature to date are listed below. They are for tension and bending
only.

1. Gross and Srawley, 1965, [61], used in Refs. [2,3].

k
| L _ L01.09-.41¢+18.7¢%-38.48¢%53.85¢4) ,  (C.104)
| o,ia’ G—{ }
k
11
—-{1.99-2.47¢+12.97¢%-23.17¢%424.8¢*} . (c.105)
azr; IT{ }

2. Tada, Paris, Irwin, 1973, [62], used in Refs. [50,51,53,55].

K ot 1/2¢ 759..02¢+.37[1-sin(x€/2)]
0 J—
ko {_gtanlﬁ}l/z{.923+.199[1—sin(16/2)] (€.107)
02[;* 13 2 cos(7€/2) ’ ’
3. Kaya and Erdogan, 1980, [63], used in Refs. [54,56-60].
k
L. - 1.1216+6.5200¢2-12.3877¢%+89.0554¢8
oll?f
-188.6080¢5+207 . 3870¢10-32 . 0524¢12 | (C.108)
ky 2 3
= 1.1202-1.8872¢+18.0143¢2-87.3851¢
olf;

+241.9124¢-319.9402¢%+168.0105¢% (C.109)
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C.4 Line-Spring Model SIF Normalization

The stress intensity factor solutions for the line-spring model
are normalized with respect to the corresponding plane strain value at
the center of the crack. This shows how the constraining effect of
the ends affects the crack driving force. The dimensional SIFs

provided by the LSM are

Kl = {x¢h [ 0,8; *+ T9&y ], .(C.110)
K, = {x¢h o,g, , (C.111)
K3 = {xéh [ 0484 *+ O58g ] . (C.112)

These are normalized with respeét to

[ ]
KjO = f{oh akgk(fo) , (C.113)
where k corresponds to the loading and j=1 when k=1,2, j=2 when k=3,
and j=3 when k=4,5. Note that the primary SIF is used for all modes

given in Eqns. C.110-112.
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Table C.1 Stress intensity factors for an edge
cracked strip for tension, bending, constant in-
plane-shear, parabolic out-of-plane shear |,
twisting, and constant out-of-plane shear.

STRESS INTENSITY FACTORS

ky k) k) ks kg ko
a/h all? 021? 031—; 045_‘ asfa— asl?
.0 1.1215 1.1215 0. 1. 1. 1.1215
.025 1.1264 1.0921 0.0670 1.0003 0.9684 1.1215
.05 1.1399 1.0708 0.1313 1.0010 0.9373 1.12155
.1 1.1892 1.0472 0.2522 1.0041 0.8765 1.1219
.15 1.2652 1.0432 0.3628 1.0094 0.8172 1.1233
.2 1.3673 1.0553 0.4638 1.0170 0.7594 1.1264
.25 1.4975 1.0822 0.5556 1.0270 0.7030 1.1323
.3 1.6599 1.1241 0.6392 1.0398 0.6477 1.1419
.35 1.8612 1.1826 0.7156 1.0558 0.5935 1.1562
.4 2.1114 1.2606 0.7859 1.0753 0.5403 1.1763
.45 2.4253 1.3630 0.8512 1.0992 0.4881 1.2034
.5 2.8246 1.4972 0.9131 1.1284 0.4368 1.2391
.55 3.3428 1.6747 0.9733 1.1642 0.3864 1.2854
.6 4.0332 1.9140 1.0339 1.2085 0.3369 1.3450
.65 4.9843 2.2459 1.0980 1.2642 0.2883 1.4221
7 6.3549 2.7252 1.1700 1.3360 0.2408 1.5229
.725 7.2838 3.0500 1.2111 1.3801 0.2174 1.5852
.75 8.4532 3.4582 1.2572 1.4315 0.1943 1.6578
.775 9.9596 3.9830 1.3102 1.4922 0.1715 1.7435
.8 11.955 4.6764 1.3726 1.5650 0.1491 1.8459
.825 14.694 5.6248 1.4482 1.6541 0.1272 1.9708
.85 18.628 6.9817 1.5429 1.7663 0.1057 2.1269
.875 24.634 0.0444 1.6664 1.9125 0.0848 2.3289
.9 34.632 12.462 1.8368 2.1133 0.0646 2.6037
.91 40.659 14.515 1.9251 2.7448
.92 48.632 17.225 2.0304 2.9116
.925 2.0911 2.4114 0.0453 3.0074
.93 59.559 20.932 2.1584 3.1132
.94 75.23 26.236 2.3185 3.3634
.95 99.14 34.306 2.5260 2.9180 0.0273 3.6854
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NN WN=O &

Table C.2
and g2(§) for tension and bending respectively.

L

[y
QOO U R WN-=O

b
N

The compliance coefficients for gl(f)

COMPLIANCE COEFFICIENTS

1.

-1

8.
-29.

84
-182
274
-252
92
62
-88
37
-5

Mode 1

C1x

12152

.67890 -3.
43058 10
46644 -36.
.43442 110.
.95329 -255.
.45012 421
.12029 ~-440.
.30672 199.
.66657 123
.30652 -237.
.54045 136.
.30201 -28.

1.

Cox

12152
04507

.49184

66780
09900
68184

.97167

50866
37326

.93056

97164
17068
91005

Table C.3 The compliance coefficients for gi(f),

i=3,
out-of-plane

4,5,6,

3k

. 73069
.44019
.33305
.80514
. 94406
.74775
.63860
.32028

for parabolic in-plane-shear, constant
twisting
in-plane-shear respectively.

shear,

COMPLIANCE COEFFICIENTS

1.

Modes 2 and 3

C
0

4k

.4999949
.2860705
.2661996
.2193511
.1731221
.1047768
.0418068
.0075456

C

5k

1.0

.773760
.937496
.602894
.176914
.183231

2.906943

312

.121964
.659759

and

constant

6k

.12152
.55939
. 18069
.39478
.07787
.40893
.82745
.11784
.67088
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Figure C.1 The geometry and superposition for the
cracked strip.
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APPENDIX D

Determination of the Weight Function

The solution of a singular integral equation such as Eqn. B.5 or
the strongly singular version, Eqn. B.9 involves obtaining ¢(x) or
v(x) for a<x<b. Before attempting the numerical solution, the
behavior or weight of the unknown at the endpoints, a and b, should be
determined that will force the singular or dominant integral to be of
the same order as the other terms in the equation. Without this
asymptotic behavior an accurate solution near the ends is difficult to
obtain, although in the central portion convergence is acceptable (at
least for the integral equations studied in this dissertation). We

then seek to obtain a and f defined as,

() = £(&)wm (8) = £(8) (b-t)* P (e-a)P (.1)

v(t) = g(t)wy(t) = g(t) (b-t)%(t-2)” (.2)
for finite

g(a), g(b), £(a), £(b) # 0, (0.3)

where wi(x) are known as weight functions for the integral equation.
The typical integral equation studied in fracture mechanics has a
right-hand side (p(x) in Eqns. B.5,9) that is of order one. Here the
weight function must be such that the singular term in these equations
is finite. All through crack problems are in this category. However
for the part-through crack case, only when the crack shape, £(x) is of

the form,
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£x) = £,0-7, y<1/4 (.4)

is this condition met. If 9 > 1/4 the line-spring terms will be
unbounded and for 7 < 1/4 they will be zero (see Chapter 2). If 7>
1/4, such as for a semi-ellipse (7 = 1/2), a solution for a{x<b can
only be obtained if a weight is chosen that will duplicate this
unbounded behavior. For the special case where K(x,t) is zero (see
Eqn. B.5,9) and 79 < 1/4, the weight function should be chosen such
that the singular integral matches the 7 dependent zero behavior of
the line-spring contribution. In both of these cases the weight
function will be such that the displacement profile will be physically
unacceptable. If this matching is ignored and the through crack
weight is used for all 79, a convergent solution to the part-through
crack problem can still be obtained for about 98% of the domain, a<x<b
without too much extra computer time. 0f course this is well beyond
the expected range of validity of the line-spring model, and therefore
all crack shapes will be treated as though the resulting line-spring
terms are of order one. One way to deal with this problem, shown in
Chapter 2, is to force 7 = 1/4 behavior at the endpoints.

First consider the internal crack case of an equation of the form
of B.5. From the basic theory of Muskhelishvili [78], and from Eqn.

B.22 to extend this theory to finite-part integrals (see Kaya [67]),

we have,
. b .
lim 1 v(t) ~ lim v(x)
xva 1T (t_x)z dt = -fcotxf x+a x-a * o(1) , (D.5)
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. b :

1 1 (t) ~ 1 (x)

- (Z 2 dt ¥ -acotra o HE 4+ 0(1) , (D.6)
a ~X

where

v(t) = g®)(B-)%t-a) ,  g(a),eb) # 0. (®.7)
For Eqns. D.5,6 to be of order one,

cotrf = cotma = 0 . (D.8)
This gives,

p=a=1/2,3/2,.... (D.9)
As a rule for deciding what form to take for finite-part integrals,
Kaya [79] states that all roots should be used such that g(x) and its
derivatives remain bounded at x approaching a and b. Therefore we
take,

a=p=1/2, (D.10)
and

1/2 1/2

v(t) = g(t) (b-t)"""(t-a)

In order to obtain the compliance functions used in the line-

(D.11)

spring model, the edge cracked strip (Appendix C) must be solved. The
crack opening displacement, v(x) will have a different weight function
than Egn. D.11. From Eqn. C.39 note that there are integrals which
become singular when both t and x go to zero simultaneously, so these

terms must be included in the limit as x+0.

b b ) b
1 () dt + 1 vt dt + 17 12xt v(t) dt ~ 0(1) ,
" j(o (t-x)2 v Io (t+x)2 " Jo (t+x) ®) ( %D.12)

for
v(t) = gt)(b-9)%F ,  g(0),g(b) # 0 . (0.13)
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The analysis for x at b is the same as for the internal crack. From

Ref. [67] we have,

| lia 1 —"—(Q— dt = -peotap LB XX () (D.14)
; x*0 ¥ X
0 (t-x)?
lim 1 (t) __ B lim y(x)
X'l'g LRI . ~ sinxf x-)g . i +0Q1) , (D.15)
(t+x)?
1 12xt _12(p+1)B(B-1) lim v(x)
J0 (t+x)4 v(t) dt = 3!sinT(f+1) x0 x + 0(1) . (D.16)

Therefore the characteristic equation for f is,

B, 2(p+1)p(p-1)
~Peotnf - sintf * “sinr(f+1) =0, (D.17)

which reduces to,

—=b_ [cosTf - 1 + 2p ]=0, (D.18)

sinvf

which has the root f = 0. Therefore for an edge crack,

1/2

v(t) = g(t) (b-t) (D.19)
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APPENDIX E

Numerical Methods for the Solution of Singular Integral Equations

In this section the two most common numerical methods for solving

singular integral equations of the following form will be considered:

b b
[48) 4 o [p0)K(x,0) dt = p(x) , acxch (B.1)
a a

b v, Jb o, _ X

2 (b2 t - av(t)at t=p(x), adx<b. (E.2)

These two equations are equivalent for

v(t) = V) - v (e, $(8) = oY, (E.3)
with the condition
v(a) = v(b) =0, (E.4)

which for Eqn. E.1 is expressed as,

b
[pe) at=o0. (E.5)
a

Both solution methods can easily be generalized to include multiple

unknowns and multiple cracks, so for simplicity will be left out.

E.1 Quadrature.

Here we consider the solution of Eqn. E.1 for the case of an
internal crack. The first step is to express the unknown in terms of

its weight function given in Eqn. D.11. We have,

£(t)
$(t) = : (E.6)
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This is substituted into Eqn. E.l1 using the following definitions:

_ba_  b+a
t =5 s 55, (E.7)
p(x) = p(s) , (E.9)
?() b-a %
$(t) = —3 , 1(8) =2 1), (E.10)
1/2 2
(1-t%)
b-a
L(r,s) = N K(x,t) , (E.11)
to obtain,
+1 f(r) dr +1 f(r) -
{ 2.1/2 + J 2.1/2 L(r,s) dr = p(s) , -1<s<1 .
-1 (1-r%) ' “(r-s) -1 (1-r%) (E.12)
We now make use of the quadrature formula
+1 h(r N
j —(—)— dr = > w.h(r.) , (E.13)
2 1/2 i v
where
r. = cos%f%r , 3 =1,...,N, (E.14)
which are roots of the Chebychev polynomial Ty(r), and
- T = -
wj—N—l’ j=2,...,N1 ,
_ _ L]
W= Wy = ZN-1) (E.15)
This quadrature is exact when the function h(t) is a polynomial of
degree (2N-1) or less and therefore has good convergence when

integrating the well behaved Fredholm kernel L(r,s) in Eqn. E.12 as N

is 1increased.
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However the integration of the singular term in this



equation introduces a relatively large error which has been found to
be proportional to the Chebychev polynomial UN(r). Therefore when
values of s are chosen to make UN zero, the error is reduced and the
integration is exact for polynomials of degree 2N or less. The s

values are,

s, = cosTy{ % , i=1,...,N-1 . (E.16)

It is this information that makes the method work. Applying the

quadrature formula to Eqn. E.11, we obtain,

N

1 _ s

;z:wjf(rj)[r.—s. + L(rj,si)] = p(si) , i=1,...,N-1, (E.17)
j=1 j 1

which is a system of N unknowns (g(rj) , J=1,...,N) and N-1 equations.

Recalling Eqn. E.5 we supplement Eqn. E.17 with

N
> w.f(r.) =0, (E.18)
j=1 J J

which can then be solved as a system of linear algebraic equations.
Convergence is obtained as N is increased.

In the case of an edge crack where a = 0, the weight function
changes (see Eqn. D.19) and ¢(t) beconmes,

o f(t)

t) = .
o0 =

(E.19)

After substitution using Eqns. E.7-11 with a=0, the singular integral

equation, E.1 becomes,

+1 7 +1 =
f(;}zdr + __i1£%7§ L(r,s) dr = p(s) , -1<s<1 .
-1 (1-r)"""(r-s) -1 (1-1) (E.20)

The necessary quadrature for this weight function is,
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1
f _h(x) 4.
-1 {1-r j

N
. wjh(rj) R (E.21)

1

where now the values of wj and rj must be obtained numerically as

roots of the following Jacobi polynomials:

PN(‘I/z"l)(tj) =0, j=1,...N . (E.22)

P2y =0, i=1,.. N1 . (E.23)

It is easier to use Eqns. E.12-16 and include (1+t)1/2 in the function
| f(r). For the edge crack however, Eqn. E.18 is replaced with

; h(-1) = h(ty) =0 . (E.24)

The quadrature method is not a good choice for the solution of
} strongly singular integral equations such as Eqn. E.2 because the
| existing quadrature formulas for finite-part integrals involve
operations that make solving the integral equations far more
complicated than solving the equivalent equation with a Cauchy
singularity, (see [67]). Perhaps in time a more convenient
quadrature will be developed. A better and simpler approach to
solving Egqn. E.2 is the expansion method, or more specifically, the

collocation method.

E.2 Collocation.
First consider the internal crack where the unknown is expressed
as

1/2

v(t) = g(t) (t-2) /2 b-1)1/2 | (E.25)
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Note that Eqn. E.4 is satisfied which shows an advantage of using the
displacement as the unknown which leads to a strongly singular

integral equation. Again use Eqns. E.7-9 with

v(e) = B2 v a2, (E.26)

L(r,s) = [%]22—5 : (E.27)

Substituting into Eqn. E.2 we obtain,

+1 = ‘ 2 +1_ -
% v{r)il;r dr + I v(r)(l—rz)l/zL(r’s) dr = p(s) ,
-1 (r-s) -1 -1<s<1 . (E.28)
Next we choose
_ N
v(r) = Z a,.f. l(r) ’ (E.zg)
i=1 h I R

where fj(r) are linearly independent functions chosen to "fit the
curve" and the aj are coefficients to be determined. I believe that
it is best to choose orthoganol polynomials so that the coefficients
show convergence as N is increased. The proper choice for the weight
of Eqn. E.28, is the Chebychev polynomial of the second kind, Uj_l(r).
With other functions such as a simple power series rj_l, convergence
can only be seen by calculating the sum (Eqn. E.29) as the
coefficients themselves do not converge. Also as N gets large the

i-1 can get large enough to cause round off error as

coefficients of r
was experienced with the thin plate limit in Chapter 3. This problem

is avoided when using orthoganol polynomials. These convergence

characteristics are shown in table E.1 where the coefficients, a; are
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listed for N = 10 and 20, using both U (r) and r(2j_2) for the

(2j-2)
fitting {function, f(2j_2)(r) (see Eqn. 28). The problem is symmetric
in r so only even functions have non-zero coefficients. This shows
slow convergence typical of part-through crack problems. Although the
numbers for N = 20 and r(2j—2) are large, they give the same result as
the Chebychev polynomials. Mostly all problems can be solved with
power series, but the orthoganol polynomials, I believe, are better.

Next substitute Eqn. E.29 into Eqn. E.28 to obtain,

2.1/2

+1 £, 1- +1

SO | £, (e 2,5 dr) = 50s)
-1 -1<s<1 . (E.30)

N
;E%aj{§

1 (r-s)?

With this method there is no restriction on the choice of s as long as
it does not coincide with r in Eqn. E.30. Roots of Chebychev
polynomials which concentrate points near -1 and +1 are a good choice
when information near the endpoints is needed such as the
determination of stress intensity factors for through cracks. Table
E.2 1lists the coefficients for N = 3 and 6 and the resulting stress
intensity factor to show how good convergence is for this type of
integral equation.

A more uniform spacing of points has been found to be a better
choice for convergence of the line-spring model where information in
the central portion is more important (see Table E.3 ). In this table
equally spaced points improve convergence by about one order of
magnitude. Another reason to prefer this choice of sj is that the
solution is most accurate there (recall that the collocation method

gives the solution for all s) and it is more convenient to know the
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solution at these points than at the roots of an orthoganol
polynomial.

For a given value of s there are two integrations to perform in
Eqn. E.30. Any standard technique can be used, for example Gauss-

Chebychev quadrature which takes advantage of the weight,

+1 M
[ @ aH? ar = Y whiry (E.31)
-1 k=1
where
2
.5 . kv
Y T el {51n§:I ] , (E.32)
k
T, = cosi:% . (E.33)

The first integral can be determined by using Eqn. B.27 or for certain
expansion functions fj(r) such as Uj(r), there are closed form
expressions. For example,

1/2

41 U, (r) (1-r2)
[T ar- A (1)U (s) - (E.34)

-1 (r—s)2

See Appendix A or Ref. [67] for similar formulas for other functions

and other weights. Therefore if Eqn. E.30 is evaluated at N different

points, the coefficients, a.j , j=1,...,N can be determined. Also a

least squares technique can be applied if more than N values of s are
selected.

Both numerical methods have been used in this dissertation, and

the collocation method has been found to be better. One important

advantage of this method is that the number of unknowns is unrelated

to the way in which the integrations are performed. This makes for
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better efficiency. Another advantage is that the function is given at
all points instead of at discrete values of s as in the quadrature
method (Eqns. E.16,24). This makes convergence easier to check
because with quadrature, as N is increased, the stations at which the
function is given, shift. The only common points from one value of N
to another are the endpoint, the most difficult to converge, and the
midpoint which is the easiest. With collocation either the same
values of s can be used for successive N values, or the function can
simply be evaluated at any point according to Eqn. E.29. I have found
the collocation method to be most accurate when N unknowns and N
equations are used as opposed to using the before mentioned least
squares method. This is similar in principle to curve fitting.

For the edge crack the technique is similar except the singular
integral in Eqn. E.30 must be solved numerically because expressions
such as Eqn. E.34 are not available for a (l—r)l/2 weight. Kaya [67]
has developed a scheme which gets around this. Instead of normalizing

from -1 to +1, he normalizes from O to +1 as follows,

t =br, (E.35)
x = bs , (E.36)
v(t) = bv(r) , (E.37)
L(r,s) = bZ ax . (E.38)

Then Egqn. E.2 beconmes,

% (v r) dr - f v(r)L(r,s) dr = p(e) , OKs<l . (E.39)
0 (r-s

Now we can use
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T@) = glr)a-rH)/? . (E. 40)
Also 1if

0
J () g (E.41)

is added and subtracted from Eqn. E.39 we have,

+1
g(r) (1-r
0

¥+1 (1) (1_;2)1/2 i . I

21/2
1 (r-s)?

L(r,s) dr -

J'o a(r) (1-tH 1/

3 dr = p(s) , 0<s<l . (E.42)
-1 (r-s)

Now the singular term can be evaluated in closed form.
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10

20

Table E.1 :
Uj—l(r) and rJ—1 for a part-through crack to show

Coefficients for expansion functions,

convergence for coefficients of U for increasing N

and to show how power

large.
£ = .6(1-52)1/4 , tension.
Y(2;-2) )

3 213 223
1 .602954e00 .201102e01
2 .353661e-1 .357367e-1
3 -.633608e-2 .29740le-2
4 -.238970e-2 .120856e-2
5 -.115589e-2  .878486e-3
6 -.672035e-3  .658983e-3
7 -.448539e-3  .514599e-3
8 .336133e-3 .429394e-3
9 -.280330e-3  .389471e-3
10 -.128226e-3  .192492e-3
1 .602962¢00 .201104e01
2 -.353528e-1 .357469e-1
3 -.631705e-2 .297507e-2
4 -.236433e-2 .119822¢-2
5 -.112297e-2  .854624e-3
6 -.629824e-3 .618609e-3
7 -.394573e-3  .453260e-3
8 -.266935e-3  .340355e-3
9 .191184e-3 .262485e-3
10 .143206e-3 .207703e-3
11 .111307e-3 .168386e-3
12 -.893108e-4 .139685e-3
13 -.737318e-4  .118478e-3
14 .624979e-4 .102717e-3
15 .543247e-4 .910346e-4
16 .483900e-4 .825134e-4
17 .441540e-4 .765362¢-4
18 -.412504e-4  .726940e-4
19 .393969e-4 .706965e-4
20 .190835e-4 .349693e-4
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series coefficients get

~(2i-2)
alj a2j
.633626e00  .197755e01
.995538e-1  .124094e00
.991316e-1 -.204339¢00
.223967e01  .373660e01
.170071e02 -.275699e02
.676896e02  .107146e03
.150545e03 -.234331e03
.188716e03  .289774e03
.124487e03 -.188933¢03
.336138¢02  .504607e02
.633599e00  .197746e01
.981042e-1  .124878e00
.127104e00 -.752523e00
.116577¢02  .472852e02
.413200e03 -.145520e04
.841220e04  .265618e05
.109143e06 -.315897e06
.963774e06  .259884e07
.605181e07 -.153958e08
.278436e08  .674988¢08
.957704e08 -.223025¢09
.249352¢08  .561471e09
.494303e09 -.108197e10
.745521e08  .159325e10
.848642¢09 -.177709e10
.716454e09  .147440e10
.434607¢09 -.881107e09
.179004e08  .358246e09
.448065e08 - .886709e08
.514322e07  .100789e08




Table E.2 Convergence of expansion function
coefficients aj and normalized stress intensity

factor kl/(o2I;) for a through crack, a/h=1, v=.3

j 5 35 kl/(azI;)
N=3
1 .00000 .255800e01
2 .58779 .126237e00
3 .95106 .103953e-1 .74742
N=6

.00000  .255883e01
.28173  .125167e00
.54064  .103724e-1
.755675  .508637e-3
.90963  .159547e-4
.98982  .334089e-6 .74748

UL WK =
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Table E.3 The

collocation

through crack loaded in tension.

.13617
.26980
.39840
.51958
.63109
.73084
.81697
.88789
.94226
.97908
.99767

£ = .6(1-s

1]

.517675e00
.826466e-1
.862004e-2
.320951e-2
.154063e-2
.816275e-3
.454261e-3
.249781e-3
-125213e-3
.514386e-4
.148252e-4
.217783e-5

.517492¢00
.828914e-1
.891617e-2
.353796e-2
.188429e-2
.116178e-2
.796345e-3
.580135e-3
.465276e-3
.386326e-3
.334534e-3
.149021e-3

effect of the choice

2)1/2

3.23

.179305€01
.932252e-1
.478427e-1
.163700e-1
.772860e-2
.413912e-2
.232331e-2
.128652e-2
.650011e-3
.269770e-3
.787855e-4
.117624e-4

.179224€01
.945347e-1
.494622e-1
.181808e-1
.963221e-2
.605954e-2
.422672e-2
.317588e-2
.253009e-2
.211617e-2
.184705e-2
.840827e-3
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£ = .6(1-s

a.lJ

.602986e00
.353093e-1
.625598e-2
.228765e-2
.103516e-2
.535728e-3
.296962e-3
.165651e-3
.858241e-4
.372392e-4
.116721e-4
.192020e-5

.602958e00
.353590e-1
.632578e-2
.237578e-2
.113751e-2
.647982¢-3
.417042e-3
.294652¢e-3
.225401e-3
.185580e-3
.163903e-3
.767395e-4

of the

points, sj on convergence for a part-

2)1/4

a.ZJ

.201108e01
.357855e-1
.298601e-2
.117540e-2
.799027e-3
.535892¢-3
.349407e-3
.218096e-3
.123060e-3
.571948e-4
.189765e-4
.327248e-5

.201103e01
.357420e-1
.297444e-2
.120271e-2
.864942¢-3
.635656e-3
.478286e-3
.375106e-3
.309416e-3
.270293e-3
.251536e-3
.124182¢-3




APPENDIX F

Short Crack Analysis of the Compliance Functions

For small § (small crack depths) we write,

2 3 4 5
gl(f) o * c11§ + c12§ + c13§ + c14§ + clsf + ..., (F.1)

2 3 4 5
8(€) = cg + o€ + cool” + coaf” + ey 7+ col” 4 ., (F.2)

where

C. =C C :c

i0 i0 ’ 10 20

Cc

i1 = 3/2059% 5y >

c:o = 15/8C, 1+ 3/2C, + C

i2
Cig = 35/16010+ 15/8Cil+ 3/20i2+ Ci3 ,

c;4 = 315/128C, + 35/16C, + 15/8C, ,+ 3/2C,4+ C,,

.5 693/25601

o* 315/128C, + 35/16C,,+ 15/8C, 5+ 3/2C, ,+ C,

155 3)

where Cij are listed in table C.2. From Egn. 2.26,
2,2 3 4. 2
e = 1{ 1/2co§ + 2/3c0c11§ + 1/4¢ [c11 + 2coc12] +
1/5(5[2c Cin + 2C 1Cipn) + 1/6(6[2c C. + 2o+ 2¢.c ] +
0713 11712 0714 12 11713
1/7§7[2c Cyp + 2C4Ci, + 2C,,Cn] + 0({8)} (F.4)
0715 11714 12713 ! )
2,2 3 4. 2
Ty = 1{ 1/200§ + 2/3coc21§ + 1/4¢ [c21 + 2coc22] +
PR 6 2
1/5¢ [2c0c23 + 2c21c22] + 1/6§ [2coc24 + Cog * 2c21c23] +
1/7€7 [2¢4cg5 + 2651Coy + 2epntes] + 0(ED)) (F.5)
0725 21724 22723 ! )
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12~ %1 ~ ”{

4
17487 [cq1C9) * SoCon * SoC12l
1/5§s[c0c23 +C

6
1/6¢ [c0c24 +

2,2 3
1/2c0§ + 1/3¢ [coc11 + c0c21] +

+

013 * ©11%22* 21%12) *

CAC +

014 * ©11%23 * 21613 * 1222

1/7§7[c Cor *+ CACig + C14Coys +* CoyCqy + C1oC ]
0725 0715 11724 21714 1223 * ©2213 F. 6)

Eqn. 2.33 relates 15 to

a-vHmyy = o

€211/4(c2, +

a.. as follows
1]

( 1/2co 1Y '3 [2/3c0 21 1t 1/2c 2] +

2
2c0022)61 + 2/3coc2162 + 1/2c063] +

-1 2
§ "[2/5(cgegz + copop)0y + 1/4(cyy + 204Cn9)0p +

2
2/3cqey; 05 + 1/2026,] + 0(1)} ,

36 (1-V2) Tog =

1{ 5‘41/2cgal ¢ €73[2/3c 4,0, + 1/2c 6, +

'3 [1/4(c11 + 2c0 12)6 + 2/3c0 1 2 + 1/2c 3] +

'3 [2/5(c0 13 * 11c12)6 + 1/4(c11 + 2co 12)6

2/3coc1163

-6(1-v%) 7, =

2
+ 1/2c062]

+

+

1/3co(c11

+ 1/2c§64] + 0(1)} ,

{g 1/2¢26, + €7[1/3c4(e

11521 * Sof22 * S0C12)% *

2 -1
c21)52 + 1/2c063] + € [1/5(c0c23 * %3 *
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(F.7)

(F.8)
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)6

1



1199 * €91612)01 * 1/4(cq91 * Cotog * SC19)0g *

2
1/3cy(cqq + B3 + 1/2c8,] + 0(1)} , (F.9)
where
1
6, = +— ,
1 Al
.
2 A2 ’
1
2
5 - Ny-8,h4
1
3 2
A -2A A A, +AA
5 -2 123714 (F.10)
4 A4 v
1
and
2 2, 2 2 2
Al = {1/8co(021+2c0c22+c11+2coc12) + 4/9coc11c21 -

2 2 2
1/9¢ch(cyqy+egy)” - 1/4°o(°11°21*co°22*°o°12)} ,
A, = 12{1/5c2(c Cq9+Cy1C10+CnCoatCn1Con) —
2 0{c0%13*C11%12% 0 23 2122
1/6c,(c c2 +2CNCq1Cnnt+C 02 +2€Cn1Cq10) — 1/5c2(c ContCnCqat
0(€116212%%11%22*%21°11 %% 2112 0{c0%23%013
€11%92*21%12) - 1/6°o(°11+°21)(°11°21+°oc22+°o°12)} ,
B 2{ 2 2 2
By = 77{1/12¢((2chcy 4+ Con*t2Ch; Co+2CCy 4+ C 9 2C11Cy3)
4/15¢4(c41193+¢11 %91 S22 %0%21%13*%21%11%12) *

2

2 2
1/16(c7y+2¢4cy o) (g +2cgCeqg) - 1/6ch(cheo tCC14*C91¢13%C12%0"
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C11%93) ~ 1/18(cq c91+chCan*Cois)

2/15°o(°11*°21)(°o°23+°o°13*°11°22*°21°12)} ,

by=17 {2/14°o(°o ©95*©21%24*C22%23*%0%15*¢1114* 12%13) *

2 2
1/9¢4(2¢411C94%¢11%92* 291 %1193+ 2¢0%91%14*C21 €12+ 211521 €13) *

1/20(c11+2co 12)(2c0 23+2c21 22) +

2
1/20(c5) +2¢5c9) (2coc 13*2¢11¢19) — 1/7eq(cgta5+C0t15%¢11 %04

C91°14"C12%23*C90%13) ~ 1/9¢p(cy1+eq;) (oo tcney 4*€11C03"
- 1/10(c

C91°13*¢12%22) 11521*€0%22*S0%12) (Sp23*C0C13"

c11c22+c21c12)} . (F.11)

Now I have

N = 815-4 + 52§—3 + 536-2 + 546-1 +0Q1) , (F.12)
Tog = € 1+ 4> v agt 2+ q Tt 4 0Q) (F.13)
Tig = Tgy = 8,6+ b€+ 162 b 67 v o) (F.14)

where Sis by and 9 i=1,2,3,4 can be obtained from Eqns. F.7-9. Now

consider the stresses (recall Eqn. 2.31),
01 = u(s)"ll(f) + p(s)7l2(§) ) (F.15)
0y = u(s)79y (6) + P(8)7nq(6) (F.16)
where for the remaining analysis,

2)1/2

¢ = §0(1—s (F.17)
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I will also assume that the loading is symmetric in s, so the

following expressions for u(s) and f(s) are used,

u(s) = (1-s9 /2 Zah 2-2)® (F.18)
p(s) = (-2 Zaz,J 25-2)® - (F.19)
For small € or for s near 1,
N
4
0 = 5 2yl ¢ o) - 0eh (F.20)
B(s) = > {b s g%} + 0(eh (F.21)
gy & : :
where
by = (2i-D) (F.22)
i-1
c. =3 > %, (F.23)
1gg isl

The following expressions result for Eqns. F.15,16,

-y

3 2 -1
a,(€) = 55 j{j {g bis; + € bisy + € (bysy + ci5) +
(bysy + cjsz)} .
. :?: {§‘3b by ¢ € 2b.ty + £ (b.ty + c.by) +
& & 10 € byt i*a * %

(bsty + cjtz)} + 0(€) , (F.24)

N
1 -3 -2 -1
05€) = ¢ ;g: {§ bity + € bity + £ (byty + c5b)) +

o

334




(bty + cjt2)} .

N
-3 -2 -1
+ §0 b azj{§ qul + € qu2 +§ (qu3 + chl) +

(qu4 + ch2)} + 0(€) . (F.25)
Using the prediction of Chapter 2 that the stresses must have a square

root singularity at the ends, i.e. f—l, we must have,

N
%8 jg; alj{f_ab.s1 + E—zbjSZ} +

= i
N
1 -3 -2 -
fo J§1 azj{f bity + € .bjtz} -0, (F.26)
LE B
€ = 1 2
j=1
N
1 -3 -2 _
& ng azj{g by + £ quz} =0, (F.27)
which is true if
N
jgl a;sb5 =0, (F.28)
and
N
b, =0 . F.29
j;l 29;®; (F.29)

This is equivalent to saying that the through crack stress intensity

factor is zero, because

1
—=«

k N
a..b.
ola j=1 %I

, i=1,2 . (F.30)
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APPENDIX G

Stress Intensity Factors

G.1 Elasticity Theory.

The study of the static stress distribution near the tip of a
crack in a linear, elastic solid has been reduced to the determination
of constants called stress intensity factors (see Irwin [68,69]). To
illustrate this consider the two-dimensional plane geometry where
Williams [4] and Sih [80] have given the asymptotic form of the
stresses of in-plane and anti-plane loading, respectively. These
solutions, presented below, are obtained by use of eigenfunction
expansions which satisfy the crack surface boundary conditions. The
coordinate system is chosen to duplicate the through crack geometry
used in this dissertation where the crack lies in the yz-plane with z
tangent to the crack front. The polar coordinates r,f are measured

from the crack tip and lie in the xy-plane.

k k
1 6 . 0 . 36 2 . 8 0 36
g~ cosy [1-sing sin~ ] - sing [2 + cosg cos 5] +
y (o7 2 2 2 o7 2 . 2 2
w 2n-1
> 2 "t (6 ] 6.1
* | [blnr fln(o) ¥ b2nr f2n( )] (6.1)
g_= -El cosg [1+sing singg ] + _EZ sing cosg cosgg +
X (o7 2 2 2 (o7 2 2 2
» 2n-1
2 n ,
Poge t 3 (g T 13,(0) + byt w®] ©.2)
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k k
o~ 2v [ 1 cosy - —2 sin% ] Wt
z {2r i2r
® 2n-1
o 0
+ ngl b r fc (6) + bg T fsn(o)] ,
M0 0 30, X o .o 30
T sing cosy cosTy + cosy [1-51n§ sin g ] +
¥ ler {2r

k w 2n-1
3sind + 3= [bgr 2 £,.(8) + byo "ty (9]
T = —— sing + T + T ,
¥z [37 2 | 9n 9n 10n~ "10n
k3 " 2;-1 ]
~ —= cosg + D [b r £...(6) + b, 't (8)] .
Xz [5¢ 2 i 11 1in 12n° "12n

(G.3)

(C.4)

(G.5)

(G.6)

The stress intensity factors are kl’ k2, and k3 which correspond to

the opening (symmetric), sliding (skew-symmetric) and tearing (anti-

plane) modes of fracture shown in figure G.1. Equations similar to

G.1-6 exist for displacement as follows,

k
v(r,0) = 5% I2r [(2n-l)cosg - cos%g]
k
. 5% 7 [(2n+3)sing . sin%g} ,
k
u(r,8) = g% I2r [(2n+1)sin% - sin%g

k
- 5% {2r [(2&—3)cosg + cos%g] )
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ks 8
w(r,6) = 3 {2r sing (6.9)

where g is the shear modulus, v is Poisson’s ratio, and £=4-3v for
plane strain and k=(3-v)/(1+v¥) for plane stress. Clearly the stress
intensity factors play the important role in the expansion near the
crack tip and have been shown to play an important role in fracture
[68] or more recently [70].

The singular terms in the stresses have also been shown to apply
to geometries other than plane strain. Irwin [68] examined Sneddon’s
solution [81] of a circular shaped crack in an infinite solid under
mode 1 loading and found that in a plane normal to the crack front the
definition of k1 is the same as for the straight crack front of plane
strain. Since then Kassir and Sih [82] have proven this to apply for
a plane elliptical crack under general, or mixed-mode loading
conditions. It may be assumed that this result will hold for any
plane crack with a smooth crack front, see Ref. [83].

From Eqns. G.1-9 we define the stress intensity factors in terms

of stress and displacement below.

ky = ;1‘{: {2(y-b) 0 (0 y,2) , (G.10)
-2 B sty [ 20Ty - w© ) ], (@.11)
ky = yon 12079 7, (0,y,2) (6.12)
-l LS vy - YO ) | €.13)
kg = o 120°9) 7,,(0,7,2) (G.14)
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_ 4 lim

=92 yab IET;_E- [ w(O ¥,2) - w(0,y,2) ] (G.15)

These expressions are not valid at the point where a crack front
meets a free surface. Benthem [1] has found that the stress
singularity at this point is dependent on Poisson’s ratio and is not
equal to .5. The values for the order of the singularity are given in
table G.1. For mode 1 the exponent is less than .5 and for modes 2
and 3 it is greater than .5. In most theoretical work a singularity

of .5 1is assumed along the entire crack front, see for example Ref.

[33].

G.2 Plate and Shell Theory.

The typical expression for stress resultants in either plates or

shells is of the non-dimensional form

b uy (t)
F.(0,y) = — f 7 dt + 0(1) , y<a, by , i=1,...,5 , (G.16)
a (t-y)?
from which the singular integral equations are obtained
b u, (t)
-ﬁk = == % dt +
a (t-p)?

5 b
;{; [ uy (K (7,8) db , acych , 1,5, (6.17)
i=17a

where k corresponds to the loading where aik is zero for i#k and one
for i=k. Fi’ ci,and u, are defined in the following equations where

"a" represents the dimensional form, and "b" the non-dimensional.

{ F } = { N, /hE, M;,/h’E, V,12(1+¥)/5hE, N ,/hE, M ,/h’E }
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= {N_, M,V 6 N_ ,M_ } , (G.18a,b)

xx’ Txx’ x’ "xy’ Xy

{ Nypo Myps Yy Nygs Mg 3 =

{ bhoyy, B2/ (6)a,p, 2b/(3)agy, boyp, h2/(B)ogy }

{ Nxx’ Mxx’ vx’ ny’ Mxy } =

{ gy 02/6, 038(1+V)/5, 04 05/6 } o, (G.19a,b)
g, = aiD/E ) (G.20)
{c}={1/2, 1/24, 1, 1/2, 1/24 } , (G.21)

{ud={ugb, B, u/b, u /b, p)
= { Uy Ug gy Uy YUg } o, (G.22a,b)

with only one exception for the shell,

2
uy(t) = hu4(t) + (Xz/k) tus(t) ) (G.23)

where X2 and \ are shell parameters defined in Appendix A. To obtain
the stress intensity factors (both primary and secondary) from G.17
using G.10-15 we first convert G.17 to

SENONEDRE

1
-1/P, 6., ==
k'ik ~ «¥ %_1 (r—s)2

[¢]

5 +1
SoL fj(r)(l—rz)l/zLij(s,r) dr ,-1¢s<1, i=1,...,5 , (G.24)
ST

where

Li;(s,) = ((b-2)/2)%K;;08) (6.26)
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uy () = -9 2(e-a)! 2, (o)
- B2 g ma-rh?
= %. “k 1 ;@ (-r 51z (6.27)
J
o, = P.F, (G.28)
{P}={1, 6, 5/(8(1+v)), 1, 6 } . (G.29)

To calculate stress intensity factors we require the three-dimensional

stress in dimensional form. From Eqn. G.16 with substitutions from

G.25-27,
F (0,5) 4 (1 1,(0)a-H?
el I dr + 0(1) , i=1,...,5 .  (€.30)
o -1 (r-s)

From Eqn. G.28, using G.25 to convert functions of y to s denoted as

such by a bar, we obtain,

Ei(O,s) Fi(o,s)
x =1 (G.31)
Uk Uk

In terms of this stress ratio, (dimensional and non-dimensional are

equivalent, see Eqn. G.20), the stress expressions needed for Eqns.

G.10,12,14 are,

0 (0 s)
ax(O,y,z) = kD 1(z) 8 ki for tension, (mode 1),
%)
2(0 5)
= kD 2(2) —_— for bending, (mode 1),
0
k
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00 ( ;3(035) ]
T z(O,y,z) = 0)p h3(z) = for out-of-plane shear,
y SN J (mode 3),
00 ( ;4(038) )
T (0,y,2) = 9D h4(z) — for in-plane shear,
y L0y ) (mode 2),
© 55(0,5) o
=01 hs(z) ——5———— for twisting, (mode 2), (G.32)
k

where hi(z) are

{ hl(z): hz(z)y hs(z)’ h4(z); hs(z) } =

- {1, 22/h, [1-(22/0)%], 1, 22/h } . (G.33)
Next we use the following result from the asymptotic analysis of
singular integrals,

2.1/2
lin 1 (1 004 / lin 5O

dr S —
s*l 7 1 (r-s)2 s+1 rgzgjiy

From Egqns. G.10,12,14 we can write

+ 0(1) ,Isl>1 . (G.34)

ky = iiﬂ I2(y-b) 0(0 y,z) . (G.35)

which becomes after using G.25,30,31,32,34,

k, = lio [b—i‘]l/z 2 &, h. (z)P )
37 s01 U2 (s-1) oyph; (2) e (6.36)
- (53) Ty @pE () (G.37)

where j=1 for i=1,2, j=2 for i=4,5 and j=3 for i=3. Because the
functional 2z dependence is known for each of the loading cases, it is

sufficient to use the maximum value of hi(z) which is one. After
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normalizing,

k.
- _
it P.f.(1) (G.38)
akDE?TJ
for the crack tip at y=b and similarly for y=a
= P.fi(—l) . (G.39)

® P£3ﬂ1/2 i
kDL 2
In solving the integral equation, the function fi(r) is
determined on the interval -1<r<1. It is therefore a simple matter to
determine the value at the endpoints for substitution into G.38,39.
Next the stress intensity factors will be calculated in terms of

the displacement. From Eqns. G.19a,b

u(0,y,2) = hu (0,y) + (22/h)h/2y,(0,y) ,

v(0,y,z)

hu4(0,y) + (22/h)h/2u5(0,y) . (G.40)

The expression for the out-of-plane displacement w, is not known as a
function of z and will be dealt with later. For modes 1 and 2 we
proceed as follows. Egn. G.27 is substituted into the above

displacement expressions and then Eqns. G.11,13,15 are used to write,

hE  lim 1 1 ® b-a 2
kj 7561 y+b J2(y—b) hi(z)ci oy 2h fi(s) Jl s

) h; (2)8)p [b—a}l/z

Yb.<. 2 fi(l) , 1i#3 , (G.41)
jii
where
- ut = u” - _E - 3
Uiy T U T Yy 2p = 1+ *T 1w
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7.

=2 37,2 (i i=1,2,4,5) , 13 =20w) ,

0.

(=1,i=1,3,4 and 6, =2, i=2,5 . (6.42)

Therefore the normalized stress intensity factors calculated from

displacement are,

kj fi(l)
= (G.43)
kDU 2
and
k. f.(-1)
i i
= (G.44)
kDU 2
From Eqns. G.38,39 and 43,44 we should have,
1/Pi = 7j61ci . (G.45)

First note that if the primary stress intensity factors for both
stress and displacement are the same, the secondary SIFs will also be.
The four cases (i=1,2,4,5), are shown below to be equivalent when
defined in terms of stress or displacement indicating a compatibility
between this plate theory, which includes transverse shear

deformation, and elasticity theory for modes 1 and 2:

i=1, 1/P; = 1

7,00 = @MW) (1/2) =1, (G.48)
i=2, 1/P, = 1/6

T105¢9 = (2)(2)(1/24) = 1/6 , (6.47)
i=4, 1/P, = 1
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Tofucy = D M(1/2) = 1, (G.48)
i=5, 1/Pg = 1/6
1050 = (2)(2)(1/24) = 1/6 . (G.49)

As mentioned above, for out-of-plane shear which represents mode
3 loading, there 1is a problem. The displacement plate variable u_,
is an average quantity defined in terms of the actual displacement w

as follows, see Timoshenko [84],
h/2
3 +
u (x,y) = 5 J—h/zw(x,y,z)[l - @m?] d (G.50)

The 2z dependence of u, cannot be determined because of the plate
assumption concerning €, i.e. o, = 0. Therefore the stress intensity
factor cannot be defined in terms of displacement. It can only be
shown that the stress intensity factor obtained from u is equal to
the weighted average using G.50.

First assume that the actual out-of-plane displacement can be

expressed as,

w(x,y,2) ~ w(x,y) = hu_(x,y) . (G.51)

Then by an analysis similar to that used for i=1 and 4 above,

k3ggg ) f3(1) . f3(1)
1/2 = 7obuce = 2(190) (6.52)

® {b_—_g] 73933

kDU 2

The stress intensity factor from stress is given by G.37 to be,
k., (2z) 5f,(1)
3 _ i3 2

7 = 50w [1- @m? . (G.53)
"kD[T]
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When this is substituted into Eqn. G.50, we obtain,

+h/2
3 2
“3avg = 2h J_h/2k3(z)[1 - @m? d
1/2
b-a) 1/ % 1
-5 SptsWzamy (6.54)

which is the same as predicted by Egn. G.52.
The shell displacement component of Eqn. G.23 also is only known

as an average quantity because of its association with u, . Here
2
v(0,5,2) = huy(0,5) + (g/M)2(y/h)hug(0,y) +
+ (2z/h)h/2u5(0,y) . (G.55)

Again only in the average sense does this form comply with the theory
of elasticity so stress is used for the SIF calculation.

It should be noted that a stress singularity of .5 is assumed at
the free surface for all fracture modes. In mode 3 the parabolic
shear assumption forces k3 equal to zero at the plate surface when in
fact Benthem [1] predicts it to be infinite. However the surface
effects are not believed to greatly influence the value of the SIF
away from the surface and in most work a singularity of .5 is assumed,

see for example Refs. [33,43].
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Table G.1 Strength of stress singularity for the
intersection of a straight crack front with a free
surface in a half-space, Refs. [1,85].

Poisson’s Stress Singularity
ratio mode 1 nodes 2 and 3
0. +-.5 +-.5
.15 -.4836 -.5668
.3 -.4523 -.6073
.4 -.4132 -.6286
.5 -.3318 -.6462
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Mode I Mode 11

Mode II1

Figure G.1 Crack surface displacement for the
different modes of loading.
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APPENDIX H

Thin Plate Bending Limit of Fredholm Kernel

We consider the behavior of the Fredholm kernel of Egn. 3.130 for

a/h approaching infinity. Define

1(y,2/h) = 0y (/W) Jiix(z>g(t) a (8.1)
where
K(z) = ‘22 N iﬁ - 4K (z) + 4K, (z) + —% NOR (H.2)
1/2

= pltyl , p = 102 @/h) = pa/m) . (8.3)
First consider the 1limit for y outside of the crack. This case is
simple because as a/h gets large, z gets large. The only contribution

from K(z) comes from the 4/z2 term. For lyl)1,

limit +1
i 1(y,3/h) = ,(1+V) [ B Ef§§§_ dt . (H.4)

For y inside of the crack domain the variable z can be of order one at

t near y so it is not clear that these terms are negligible even for

large a/h. :Rewrite I(y,a/h) as follows,

2.+1 2 +1
I(y,a/h) = 22/ I_lx(z)g(t> at = gy | K@s® & ,@.9)

2 y +1
= 2r(1+) { J_IK(Z)S(t) dt + Iy K)g(t) dv } (H.6)

(1-y)
K()g(y+u/p) du }

p(1+y) P
- 5??€137 { Io K(u)g(y-u/p) du + Io (4.7)
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p(1+y)
- sty | Jp(l_y)x(u>g(y—u/p) du +

p(1-y)
[k el 60/ } (.8)

Next write Taylor expansions for g(t) as follows,

g(y-u/p) = ZZ:( ™4 /nEG) (H.9)
sO+u/p) = 2 T RCTOR O (8.10)
n=

where gn(y) denotes the nth derivative of g(y). These expressions are
substituted into the second integral of Eqn. H.8. Because of symmetry
only y>0 will be considered. After rewriting the first integral using
a simple substitution, Eqn. H.8 becomes,

—1+2
I(Yra/h) 27(1+V) J p(y t)]g(t) dt +

hd 1 2n -2 p(l‘Y)z
e 2 @mrE 0)F ’ IO uK(u) du .

Now consider the limit of these two terms separately. Since the first
integral is not singular for y<l, as p gets large all terms of K(z) go

to zero except the 4/z2 term. Therefore we have,

- 2 -1+2y -1+2y
limit I T (t)
afhow 2r(1ep) ) KlPG®)]e®) dv = ) 1 ep?
- (H.12)
Now for the second integral of Eqn. H.11. For large u

1/2 -u

Kn(u) ~ [7/(2u)] (1+afu+...) , (B.13)

where Kn(u) is a Bessel function and a is a constant. The important
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feature is the exponential decay. It can be shown that,

0 n
P (H.14)

udu

Now divide the second integral in Eqn. H.11l into two integrals,

p(1-y) € p(1-y)
[ () du = [ PRG) dus [ oK) du (H.15)
0 0 €
where € 1is sufficiently large such that the exponentially decaying
Bessel functions may be neglected when integrated from € to infinity,

(here we assume that e<p(l-y)). The first term in the series, (n=0)

requires special treatment.

p(1-y) © o
[ KW du=[ K@ au- [ K@ du (H.16)
Y 0 p(1-y)
where
[k au=[22 2.8 w)| -0 . (H.17)
0 u 0

Now we make use of Eqn. H.14 to evaluate

00 . 00 2 .
Ip(1-§§u) du = Ip(l—y§4/u ) dux st (.18)

to leading order. The second integral in Eqn. H.15 for n21 including

the coefficient of p-2n from Eqn. H.11 becomes,

_9q (P(1-Y) _on (P(1-Y)
p 2n J uan(u) du® p 2n I uzn(4/u2) du
€ €
4 (1 2n-1 2n-1,2n) . _4 1 2n-1
gt { 50 MY ) = gt Lap (8.19)

Now for the first integral in Egn. H.15. For n21 this integral with

the p_2n coefficient from Eqn. H.11 is,
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€
p o J K (u) du < 0(p") . (H.20)
0

In the 1limit as p gets large, this term will not have an order one
contribution to I(y,a/h) because €<<p and therefore it is neglected.

Now we substitute Eqns. H.12,16,18,19,20 into H.11 and obtain,

1+2y
limit g( )
a/howl (52/b) = x(1+u) { 1 (o) dt
s 2n-1
-2 1 2n
W 2 2 Gy wd—1 . @
Now look at the first integral of Eqn. H.21.
-1+2y +1 1+2y
J __S_(_)._ dt = % __E_(__)_ dt - § _E_(__)_ dt . (H.22)
1 (tp)? 1 (ty)? 1 (tn)?
Substitute the expansion,
> 1 n
n
g(t) = Z()(-l)“g N ) (H.23)
n:

into the second integral of H.22 and after some algebra,

-1+2y 1+2y »
[TTa0 g - LTS () 67N de -

1 (t- ) 1 n=0
[ 2n-1
= —2Zo Tzlll—)!‘gzn(y)%%)_—l—" . (H.24)
n=

When this is combined with Egns. H.21 and 22 we obtain,

limit

a/h*wI(y’a/h) 1(1+V) % _Ei_l_ dt

+1 (t- y)

which is perhaps the expected result considering Eqn. H.4. The reason

, (H.25)

for going through this algebra (and there is probably a better way),
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is to show that this derivation fails for y sufficiently close to one.

Egns. H.12,18 and 19 are valid only for,

——p(}_y) = o(1) . (H.26)

In the 1limit as p goes to infinity, the quantity (1-y) must be such
that the product p(1-y) still goes to infinity. Otherwise Eqn. H.25

is not valid. For more information, see Chapter 3.
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APPENDIX I

Log integrals

The major expense in solving an integral equation on the computer
is in the evaluation and the integration of the Fredholm kernels. In
the shell problem for each point used to integrate the Fredholm kernel
an infinite integral must be determined. The plate kernels are known
in closed form but involve evaluation of Bessel functionms.

Log integrals and integrals of the form,
+1(t—y)n1nlt—y|(1—t2)1/2 dt , -I<y¢+l (I.1)
which appear in both the plate and the shell equations, (and in many
other problems) may be the determining factor for convergence of the
integration of the Fredholm kernels. Gauss-Chebychev integration (see
Eqns. E.31-33) is used to show this difficulty for small n in table
I.1. The number of points used to integrate Eqn. I.1 is N. The
closed form expression used may be found in Appendix A. The value of
y does not have a significant effect on these results. Because of
this slow convergence log terms were separated from the kernels for
n<3 with the option of doing them in closed form. The following
asymptotic analysis of the log terms for z = f(t-y) approaching zero
is given for the plate kernels where the subscripts 2,3 and §
respectively correspond to bending (Mxx), out-of-plane shear (Vx), and

twisting (Mxy).

Koo ~ T 1n(@) + ¢; + 1 @%n(a) + 06 (@) (1.2)
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Ky (z) ~ -f21n(2) + ¢y - 5 A~ (3 ?In(z) + 0(z"In(2)) (1.3)

Ky () ~ -FE1n(a) + cqz - 3 p @’la(a) + 0G°1n() ,  (T.4)

Kga(s) ~ £210-0) [ 3@ 1) + cp + 5B In(a) + O(z“"ln(z))lI 55

Ko (2) ~ 2 1n(z) + g + 1 (B)%In(a) + 6(z*1n(2)) , (1.6)

where the ci’s are constants. In the shell problem these types of
terms come from the large a behavior of the infinite integrals, see
section J.4 of Appendix J.

To show how these terms affect the convergence of the stress
intensity factors, table I.2 lists results for the plate bending
problem solved in three different ways. First both log(t-y) and
(t—y)zlog(t—y) terms of Eqn. 1.2 are evaluated in closed form. Then
only the log term is evaluated in closed form. Finally both terms are
integrated numerically. In the case where the log term was integrated
numerically, convergence was unstable for increasing N . The table
shows improved convergence when the zzlnz term is evaluated in closed
form. It should be noted however, that as a/h gets large the
coefficient of this term is proportional to (a/h)z, and it becomes
unwise to separate it from the rest of the Fredholm kernel. This is
generally the case when doing part of the Fredholm kernel in closed
form. For certain parameters the two separate terms become
increasingly equal and opposite and consequently big numbers are added
to small numbers and accuracy is lost. This typically occurs for the

most interesting/difficult geometries. Table I.3 is similar to I.2
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but for out-of-plane shear and for twisting. Here there are five
different cases as can be seen from Eqns. I.3-6. Again it is
necessary to factor out the log term. The other terms are not so
important. My conclusion is that for other than the log term, a
closed form solution should only be used when repeated calculations

are necessary for an "expensive" problem.
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20
40
60
80
100
200
300

20
40
60
80
100
200
300

Table I.1 - Convergence of log integrals (see Eqn.

1.1)

using Gauss-Chebychev

corresponds to closed form.

Convergence of Log Integrals

n=0

.1578327285023¢01
.149293097097201
.1470627952900e01
.1482919042609¢01
.1531715634235e01
.1492468021175e01
.1491702663902¢01

.1497043010486e01
n=3

.5934890759307e-1
.5935358973931e-1
.5935323791180e-1
.5935318085722e-1
.5935320220412e-1
.5935320644195e-1
.5935320568158e-1

.5935320573115e-1

y=.49

n=1

.8493750878678e-1
.8768209651665e-1
.8713681420222¢-1
.8693758759624e-1
.8700300152495e-1
.8708543360460e-1
.8705949644705e-1

.8706261970927e-1

n=4

.1070779572998e00
.1070783355533e00
.1070783468198e00
.1070783448821e00
.1070783444628e00
.1070783446586e00
.1070783446588e00

.1070783446580e00
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integration

N=%0

n=2

.4311621931347e-1
.4319761807491e-1
.4320566456916e-1
.4320296083838e-1
.4320130620737e-1
.4320230905703e-1
.4320231744712e-1

.4320228921493e-1

n=5

.1692569091885e00
.1692568662971e00
.1692568670579e00
.1692568671124e00
.1692568670990e00
.1692568670976e00
.1692568670977e00

.1692568670977e00



Table

N

10
20
30
40

subjected to bending.
closed form

lnz & z21nz

.747480
.747475
.747475
.747475

closed form
1nz

.747002

.747434

.747473
.747475
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1.2 The effect of log terms on convergence
of SIF’s for a cracked plate,

v=.3, a/h=1

numerical
1nz & zzlnz

.803520
.764523
. 748220
.748087




of SIF’s for a cracked

out-of-plane shear

Closed form (t-y)"ln(t-y), n<3.

N mode 3 mode 2
10 1.676091 .4656783 -
| 20 1.675977 .4656280 -
i 30 1.675978 .4656283 -
40 1.675978 .4656283 -
Closed form (t-y)"ln(t-y), n<2.
N mode 3 mode 2
10 1.676091 .4657690 -
20 1.675977 .4656276 -
30 1.675977 .4656284 -
40 1.675978 .4656283 -
Closed form (t—y)nln(t—y), n<l.
N mode 3 mode 2
10 1.668236 .4622265 -
20 1.676051 .4656858 -
30 1.675995 .4656386 -
40 1.675984 .4656324 -
Closed form 1ln(t-y) only.
N mode 3 mode 2
10 1.668817 .4554824 -
20 1.676039 .4655730 -
30 1.676022 .4655065 -
40 1.675970 .4655034 -
All numerical.
N mode 3 mode 2
10 2.846719 1.020734 -
20 1.594647 .4349318 -
30 1.654414 .4506305 -
40 1.660155 .4547331 -
100 1.662201 .4583573 -
200 1.666864 .4626725 -
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Table I.3 The effect of log terms on convergence

plate, v=.3, a/h=1

subjected to out-of-plane shear and twisting.

twisting

mode 3 mode 2
.06969634 .5218047
.06969737 .5218052
.06969736 .5218053
.06969736 .5218053

mode 3 mode 2
.06972434 . 5218006
.06969702 .5218053
.06969738 .5218052
.06969735 .5218053

mode 3 mode 2
.06976822 .5218403
.06969392 .5218064
.06969702 .5218054
.06969720 .5218053

mode 3 mode 2
.06769097 .5221562
.06971322 .5218015
.06965142 .5218123
.06972230 .5218015

mode 3 mode 2
.06166954 . 5240765
.07014928 .5244262
.07051167 .5214280
.07034780 .5215313
.06995209 .5216891
.06966782 . 5220058




APPENDIX J

Asymptotic Analysis of the Shell Infinite Integrals

There are two reasons why the large a behavior of the infinite
integrals must be determined. First the singular behavior of the
integral equation comes from the leading order term in the large a
expansion of the integrand. The second reason is simply for numerical
simplification. The numerical technique used divides the integral
into two parts, O < a < A performed numerically, and a > A which is
evaluated in closed form. The more terms in the expansion, the
smaller need be A.

The complication in the integrand is its dependence on the roots

of the quartic polynomial,
4 43 2,2, 2 2 4] 2
ot - nge® + {[022)a%2002 + 23)e7 -

{02902 + [02deads - [02De?] . @

One need only trace through Chapter 5 to see that the kernels in

question are heavily dependent on these roots.

J.1 Asymptotic Expansions for the Roots of the Characteristic

Equation

A straightforward asymptotic analysis of the integrands of the
infinite integrals of Chapter 5 would start with the large a expansion

of the roots of Eqn. J.1. They have been found to be
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2
a (A —X2) a k (xl-xz) a [
4/3 2/3
pJ=a/p1j+a/92+p3j+ )3-2)3)4J (J3)
where
- (x)}/3 (1,58 ((1-:8)
P12 » Pyg = Py 2% 279 J » Py T Pioln 27 2
b 2
PPy .
P2- = 3 y 1=2,3,4 ,
I 4p?.+ d
13
2 2 3
6p; .Pn:+apy . +2bp, .p, .+ T
pa. - -2l 11 2] , i=2,3,4 , (J.4)
3] 4p3 +d
1j
4 2,2 2 4 2 2.2
a=-my , b=20505-25) , c=Xy , d=-k0]-2)7
2,2 2 2 2.2
e = -0 , =027 . (J.5)

By using these roots one can obtain all the quantities found in the

various kernels, for example for large a
D(a) = a431I§“x4»2(xf- A2 + 0(a?) . (J.6)

This method is good enough to determine the leading order term but
there is a better way which is shown in section J.2. It is also

useful to have the small az(kf-kg) expansion of the roots of Egqn. J.1.

They are:

3
Pi,2="M* 2N * zzr)2 + 2z g+ 0(z4) ) (J.7)
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2 .
Py = 2z, 5%, —4+L1a3 N 0(24) ’
37,2 \6 8
2 2 2
2 .
p, = z_ _ ;-2 , —4-&103 . 0(24) (J.8)
4772 A6 o8 »
2 2 2
4 =2 -
_ Ry, 1,2\8_p4)1/2 __ bugreng
To = T2 * 2\F 22739 M = and3aneaen.
0*°2p* <<y
2 2 2 2 = - -
_ Sngny+3angnyeny+2bngT, +dngen, +1
"2 7 4 3+3a 2+2¢ ’
To*2amg*<Clg
2 3 3+ 2 - - -
, - - 12ﬂ0ﬂ172+4ﬂ0ﬂ1+Baﬂoﬂ1ﬂ2+aql+bﬂ1+2bﬂ0ﬂ2+2cﬂlﬂz+dﬂ1+eﬂ2
3= 3. 2 ’
4ﬂo+3aqo+2cqo (7.9)
= 2202 (J.10)
B-202, d=-5, e=-25 , (J.11)

where Py is obtained from using the plus sign for To and Py

corresponds to the minus sign.

J.2 Symmetric Asymptotic Analysis

First recall Eqns. 5.39,65,66,67,68,80,81 from Chapter 5.

mj = —(Pj+a2)1/2 , 3=1,2,3,4 (J.12)
4

;Z;mjKjRj{ [s(1-1)a? l]pj - Pam)=0 , (3.13)
J::

4 -1

;é;mjKjRj{ npj— 1 } i q2(a) , (J.14)
4

R. =0 , .

gg%mj ; (J.15)
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4 kp.-1
}:m.nj{ xng—la— - mJ? } = -aq,(a) , (J.16)

j=1 4 A
1 lin (** 23 DX
1) =-7,30) @ gRje cosa(t-y) da (J.17)
0 ji=1

4 . +00 4
A _ 1+v lim { . TX
1_sz(y) = S %30 Kre ;E;ljijjRj +

1 4 m.Xx 2 4 m.X

+ =— > p.K.R.e I +a > K.R.e J } cosa(t-y) da . (J.18)

1-v j=1 3 j=1 373

Instead of determining the behavior of the individual quantities of
Egns. J.17,18, Eqns. J.13-16 are used to determine the behavior of the

entire sum. First Eqn. J.12 is expanded for large a.

0,

-aéan(-l)“*l[ ;% ]n , 2 = (/7] (binomial coef.) . (J.19)

B

|
RN

+

= —(pj+ 02)1/2 o —a[ 1 +

Rk
[
0O |+

1
2

1R

This expansion is valid because (pj/a2) ~ a—2/3 which goes to zero for

large a. Also the following expression will be needed,

1/2
2 2
r= —[a * L(I—V)] ’
. oS +1 " __ 2
re —agégbn(—l)n [ 55 ] ) P = @Dy (J.20)

Note that for either r or m., the large a and small x behavior of the

exponentials may be simplified as follows,

X 1 1 2 -ax

e ~ exp[—ax{l * 5 25 - 3 QZ + ...}] ~ e , (J.21)
a a
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[

m.X

J -1

P p
~ exp[-ax{l + 1 N Y + ...}] ~ e
2 02 8 a4

[

The kernels of Eqns. J.17,18 are defined for large a:

—
I

1 Illql (a)/a + 112q2(a) /a

o 4
"2 k.,
=17

=
|

o = Il2ql(a)/a + 122q2(a)/a = _anE;meJKJRJ

p—l

4
L}: .+a2zxn

j=1JJ

Therefore the following expressions are needed,

j{:m p.K.R.

AR I

From Eqns. J.13-16, Eqn. J.28 can be easily determined,

;g:meJKJRJ = ia(1-v)q,(a)

Also from these equations we can write

4 N
;E;mjKjRj = ian(l—u)qz(a) + iqz(a) ’
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J.

(J.

.

(J.

.

J.

J.

J.

22)

23)

24)

25)

26)

27)

28)

29)

30)



wlwyw
[~ 3 L]

4
> m.p.R. = -i ay(a) + iaqy(a) . (J.31)
1

szJJ A
Next express Kj in terms of pj. The characteristic equation, J.1 is

first used to write

L v a2aad? padZt
=—= 4 + . (J.32)
Kp.-1 p2 3 p4
] j P P
Kj can then be written as
p?kz
Ki=—5%53% =
J (msz-xla )(Ir.pj—l)
2,2 ,2, 2 2 .,2.2 4
2 {)‘4 . 25 (Ag-A))a + (5] a } .
T 220202 V2 2
2™ Py P;
2
s P:yD A
x S EH) e, s . (@.33)
n=0 a x2—x1
This expression is used to obtain
4 2.2,.2 2.3 2 22& 1
STK.R. = a“N° () D pi%R. + AN pi R, (J.34)
913 21N 2:773 73
i i
4 4 4
p.K.R. = a2022% > plr, +2B2> R, . (3.35)
=133 2714 2:54

Therefore we can find all that is needed (Eqns. J.25-27), if the

following three sums are known,

4 .
> p.*R. , i=0,1,2 . (J.36)
b I
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In a similar way in which Eqns. J.34,35 were found, it may also be

shown that
4 .
-1 1-
ij ijj = _;'(_2‘/—)2_ q2(a) ) (J.37)
j=1 a2 (A5-A7)
4
-2 . 1 K(1-
> oriagp; = ig@{ § 5050 -
j=1 1 3 M0
2
* l§ [ 2 12 2, ;1—:)Xg 2 ] } - (J.38)
a® P AT(GAD N0

From Eqns. J.15,31,37,38, the characteristic equation, J.1 can be used

to determine

4
n
> pm.R. J.39
j=1meJ j (J.39)

for any n because these four equations represent four consecutive
values of the integer n. By making use of Eqn. J.19, Eqn. J.39 can be

converted into
4 n
}:p.nj , (J.40)
j=11

for any n, in particular n = 0,-1,-2, see Eqn. J.36. This involves
algebra, the amount of which is determined by how many terms in the

expansion are desired. The result is

5
11 -(2k-1 11
1, 2. Eé;pzk_la (2k-1) | g1y | (J.41)
Lo2-12 -(2k-1) 11
I, 2 Eé%p2k—1a + 0@ , (J.42)
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I, * j{:pzk I TC R W (J.43)

(1+V) + zz:ﬂzk 19 _(2k_1) +

+Zh‘”1%uunkg1ﬁk” 0@, 49
11 23 5. .2 3 .4
Py = [ %7128 * 8 "3 ~ 3 ‘*2] ,
2k+1
Ppy = Eg(n“JI%”’%mun@hzﬂ L k=1,...,5 ,
J:
12 21 [ .5 1 v 3)32(81p. L
b=z [ "[16(1 v) 8]+x2[8(1 v) 2]] ,
12 1 2K kel 2k-§o . . :
Por_q1 = 2 Z;( )T, (k, §)d(3k41-j) , k=1,...,5,

1,2

A= [ 3 - e - 3

2k+1
P = N :E: (-0l dg i, )[[1 L 2)e(3k+3-5) -

y
-1 c(3k+2-j) - 7c(3k+4—j)] , k=1,...,6 ,

22 -1
Pi = =ay
22 kel oz, 2k ke 2k-j .
2 = {c-may, (1) ¢ 2D 005
J:
2
X2

X [{T¥; +X§]d(3k+2—j)- d(3k+1 i)-7d(3k+3- J)]} k=1,...,5 ,

(J.45)

HI
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where

2,2
7= (X2—X1) ’ (J.46)
n-1
o = 1, cp =28 , ¢ =a ¢ ;g;an-i i (J.47)
do = (1-v) , dn = cn(l—V) -C 1 (J.48)

B,(1,1)=x, §(1,2)=26\2, Q;(1,3)=R},

0,2, )=r2, 4, (2,2)=46Z, 4, (2,3)=657051, §; (2,420 (4x205-2),
B, (2,5)=05(sA51),

0,(3,0)=6%, 4,(3,2)=661\2, 4, (3,3)=k(15825-2),
Q1(3,4)=mx§(20n2x3-8), Q1(3,5)=5X3(15&2X3—12),
Q1(3,6)=nkg(652Xg—8), Q1(3,7)=nxg(n2x§-2),

Q1(4,1)=n4, Q1(4,2)=8n4x§, q1(4,3)=x2(28n2x3-3),

2,2, 2.4 4.8 , 2.4
Q, (4,4)=k"N5(56K0,-18), Q; (4,5)=(708 h;-452y+1)

8

2, e 48 o 2.4 4,04
0, (4,6)=05 (56K 0;-608N5+4) , @, (4,7)=05(28K A,

~455°03+6),

2,4 8, 4.8

6,, 4,8 2,4
9, (4,8)=75 (8K Ny-188°05+4) , Q) (4,9)=05 (A A5-36°0541)

5 5,2 2,4
Q,(5,1)=x", 4, (5,2)=106"\2, q,(5,3)=6>(456°25-4),

g, (5,922 (120e20%-32), q(5,5)=(210s15-1126%5+3),

Ql(5,6)=nxg(252n4xg—224n2x;+18),
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ql(5,7)=mxg(210n4x§—280x2x3+45),

2

6 4,8 4
0, (5,8)=r) (1206°15-224515+60) ,

Ql(5,9)=nxg(45m4xg-112n2x3+45),

Q1(5,10)=nx§°(10n4

xg-32x2x§+18),
8, (5,1)=0022 (s H3-4x%5+3),

0, (1,1)=1, §,(1,2)=25,

0,(2,1)=5, §y(2,2)=302, 0,(2,3)=30y, Q,(2,4)=mA,

Q2(3,1)=&2, 0,(3,2)=56222, 4,(3,3)=(10225-1),
Q2(3,4)=Xg(1052X3-3), Q2(3,5)=X§(552X3—3),
0, (3,6)=h0 (s25-1)

0,4, 1)=5>, §,(4,2)=762, 4,(4,3)=(21815-2),
8, (4,4)=RA2(3552)5-10), §, (4,5)=kA3 (355°15-20),
q2(4,6)=nxg(21m2x§-20), Q2(4,7)=ux§(7n2x§-10),
Q2(4,8)=nx;°(m2xg-2),

0, (5,1)=x", Q2(5,2)=9m4x§, Q2(5,3)=m2(36n2x;—3),

8

2,2, 2.4 4
0, (5,4)=k"\5 (84x°0;-21), Q,(5,5)=(126x",

-635%A5+1)

2

2 4,8 4
Q,(5,6)=)5 (1265 A,-105515+5),

369



4 2

4 4
0, (5,7)=hg (845X ;-10551;+10),

8

2

6, 4.8 . 2.4

0,(5,8)=A, (36K A,-63£2y+10)
18,.4,8 .. 2.4

0, (5,9)=05 (95°\,-215°X5+5) ,

2.4

0,(5,10)=23° (xH3-3s55+1) (J.49)

As mentioned at the beginning of this appendix, the infinite
integrals are divided into two parts. The portion from A to infinity

is integrated in closed form. This part can be written as,
00
J I..cosa(t-y)da , 1i,j=1,2 . (J.50)
Al

This integral for Iij of the form given by Eqns. J.41-44 is evaluated
in section J.4 of this appendix. The following expressions are used
in Eqns. 5.84,85.

5 .. 2n-2
= 13 4y (t-y) _
Li; = 2§%p2n—1( D) —@n-gy1 nlt-yl +

5. 1; 2n-2 5 .
1j n+l (t-y) 1i = .
+I§p2n“1 (_1) (2n_2) ! Fc(1)+n§2p2i—ch(2n—1) y J:1’2 s (J.Sl)

6 2n-2
= 21 n_(t-y) B
To1 = EE%pZn—l(_l) Gn-2y1 1nltyl

2n-2

6 6 _
; :Z;pgi_l(—l)n+l i%éﬁ%ijT—Fc(1)+j{%p§i_ch(zn-1) , (J.52)
n= n=

6 ® 2n-2
I = 22 n+1 n n (t-y)
122 - {I?ézp2n_l+~(l_y)n§7p (—1) a'n+1}(~1) (2[1—2)! 1n|t—y| +

6 w 2n-2
A2 T e, oo™ Gl -

370




{%22 1) S (g JF_ (201 J.53
{2 s S )P () (3.53)

J.3 Skew-Symmetric Asymptotic Analysis

The same procedure that was used in section J.2 is used here.

The necessary equations are 5.93-96,106-108, which are repeated below,

;l—gp KR = a5(@) (3.54)
4

>R. =0, (J.55)
=17

4 9

;éimjkj = Q4(a) ) (J.56)
4 i

jZ=]:.RjKj ("pj‘l) = ZQ3(a) ’ (J.57)

130 = 5 oo ) iy y)>2< )k R ™ +

-iay
. r.ngpJKJRJ(Q)e } e 1Y g4 (J.58)
N 1. .X _:
£, = 57 120 aj£jm R, (a)e * e Y da (J.59)
-t ) = L lin [+ {ZK [ e™* (a2+r2)( 2 2)
1-v 5 y 2r x+0 ier (1-v) %
m.x o
- 2iamje J ]} e da . (J.60)

Egqns. J.19-22 are again used. The kernels in Eqns. J.58-60 are

defined as follows for large a,
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13 = I33q3(a)/a + 134q4(a)/a + Issqs(a)/a =

2

th

-1 4
= —=—=> p.K.R. -
I‘(I‘V)J-zlpJ i

I4 = 143q3(a)/a + I44q4(a)/a + I45q5(a)/a

4
= iay_n.R.(a) ,
j=1 3]

4 4
:E:KjRj + x> _n.p.K.R, (a)
j=1 =1

o R R

I5 = I53q3(a)/a + 154q4(a)/a + 155q5(a)/a =

4 2 2 2 2
_ -(a”+r9) a(a™+r™) .
- gg;xjnj[iar(1-u)95 T ar 21““5]
From Eqns. J.54-57 we find:
i -2 x(1-v) )‘g(lﬂy) }
p. R.=gq (a){ - -
=T S TTAZAZNY oA202a3)?

- q (a)—.i:___
S St

4 -1 (l_y)qs(a)
2Py Ry = 5ot
=t 222022

—

4
.R. =
;é;pJ j q4(a)

Combined with Eqn. J.1 the following may be determined,

4
z:p?R. ,
j=1 J )
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for any

obtained

33

34

35

43

44

45

53

54

b5

where

to any order of a.

[k

12

1R

[}

1R

12

R

12

1R

n from which all of the expressions in Eqgns.

4
. 33
~ia + i) _p
i3 2k

[1 2 2

:Z:pas - (2k)

2 .2
05D
)2

2* Zﬂzk 12

4
45
EZ:ka 19

- (2k-1)

Zp53 (2k)

1Z”zk 12

-ia(1+v) + 1ZE:ﬂ2k G

- (2k-1)

The result is:

_la—(Zk_l)—iaé%%(—l)k(p/az)kek + 09

3

EE:ﬂ

-2 2]

Eé%(-l)k(p/az)k[ek—2ek+1] + 00

34 -

- (2k-1)

ZE:ﬂ34 -(2K) | g 10y

-(2k)

+ 0( Y

b

+0@®

+ 0

)

ZE§%<-1)k(p/a2)k[ek_l-zekl f0@d)

+ U(a_g)

- (2k-1)

- 1aZ£:( (/e ey -

Kk_4
+ 16(X2—X

4
Y,

373

+4ek 1] + 0(a )

’

J.61-63 may be

(J.69)

(J.70)

(J.71)

(J.72)

(1.73)

(J.74)

(J.75)

(3.76)

(3.77)



2 6 4 2.2 3
-p e2+x7[—asxx2+a43&k27—as3mkz7 +aghy ] )

p3e3+n7 a4xg(nzxg-1)-a5k37(552xge3)+a6xg72(1052x3_3)_
3 2.4 2,2 4 2.5
—ag7 (10x X2-1)+a85n X27 -agh”Y ] ,

= -p4e4+n7[-asxx;°(n2x§-2)+a6nx§7(7n2x§-10)-

6_2 2,4 4 3 2,4 2 4 2,4
-a7mX27 (21« X2—20)+a85X27 (35« k2—20)-agnxz7 (35« X2—10)+

5 2,4 3,26 3.7
+a, 087 (21« k2—2)—a117n AP IR IPLA | ] )

2 6 4 2.2 3
(9 [aznxz-a33n1x2+a43nx27 -agh] ] ,

2[ 6,24
-, [-aaxz(x Aa-1)+a

47x§(5n2x;—3)-a5x§72(10n2x3-3)+

2,2 4

3 2,4 25
+ag] (10« X2—1)—a755 X27 +agh™ ] )

2 110,.2.4 8 . 2.4 6.2. 24
= 0022, L0 (2052 -2 By (76203-10) vagmr5y® (216%13-20) -

43 2,4 24 2,4 5 2,4
—a7nx27 (35« X2—20)+a8nk27 (35« X2—10)—a9m7 (21« x2-2)+

3,2, 6 3.7
+a107ﬁ x27 2,157 ] )

of .10, 4.8 . 2.4 8, 4.8 .. 2.4

= K\ [-asxz (rE-32r%+1) rag S (06 ™\ 5-21670545) -
6.2, 4.8 .. 2.4 3.4, 4.8 . 2.4

~a 812 (36x8-636704+10) ragyhh (845 "N -1056%5+10) -

2 8

>a26s

4 4 4,8 4 2,4
—a9X27 (126« X2—105n X2+5)+3107 -63x X2+1)—

2,2 6 2,4 2.7 2,4 4,2 8 4 9
-3y, X27 (84« X2—21)+a125 7" (36x X2—3)—3139n X21 *ag 80 ],
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35

4 2 2
—p(e1—2e2)+n(1—v)[—a2X2+a32X27-a47 ] )

2 8 6 4 2 23 4
p (e2—2e3)+&(1—v)[a3nX2-a44nX27+356KX27 —a64nk27 +an k] ],

8, 24 6 4
—pa(e3—2e4)+n(1—u)[-a4k2(n Ma-1)+a Aoy (85%N5-4) -

—agha1? (158205-6) va,h21 (205°05-4) -ag7" (155°X5-1) +
+396n2X§75—a10m276] )

= p4(e4—2e5)+n(l—u)[asnXéz(52X;—2)-asnX§o7(8x2X3-12)+
+a7mkg72(2852X3—30)—asmkg73(56&2X§—40)+agmkg74(70L2X;-30)—

3,27 ]
’

2.5 2,4 6 2,4 3.8
-3;0fA5T (5687A,-12) +a, KT (28£°05-2) -2, 58K 7Ny 7 +21 487

2

= (7/k2)[-a35x3+a42nkz7—a5572] ,

2 4,2 2 4 2
= (1/A )[34X2(& X;—l)—352X27(2n2X2—1)+367 (anxg—l)-

—a74n2x§73+a85274] )
= (D) [-agmS(Brd-2) rag 2y (355-4) -2 5 (155%05-12) +
+asnkg73(20n2kg—8)—agn74(ISLZX;—Z)+a106&3kg75—a115376] ,
(3505 D% P
a3x§(n2x§-1)+a4x§7(4x2x§-2)-3572(652x3-1)+
4&2k§73—a7n274 )
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4

44 8, 2.4
Py = 2

6 2,4 2 2,4
a4LX2(n A2—2)—a55X27(6n X2—8)+a6mx 77 (15 X2—12)—
23 2,4 4 2.4 3,2 5 3.6
~a,26057 (10x X2—4)+a857 (15« X2-2)—a96m AT 42087
44 8, 4,8 ,.2.4 6 4,8 2,4
P = —a5X2(n Ay-3k x2+1)+a6X27(8x Ay-18x x2+4)-

8

42 4,8 2,4 2,3 4 2,4
~aghoT (28« X2—45n x2+6)+a8k27 (56£7),-60x x2+4)—

4 4.8 2,4 2,2 5 2,4
-ag7 (70« X2—455 X2+1)+a10x X27 (56K X2—18)—
4,2 7

2.6 2,4 4.8
TN (28« k2—3)+a128m X27 S

2.2
X2+X1

5
) ,
1 1602

45 2 6 4 2.2 3

p3" = (1-v) /X [asnxz—a43mx27+a53nx27 -~aghy ] )

45 2 6, 2,4 4 2,4 2.2 2,4

p5 = (1-v) /2 [—a4X2(n X2—1)+a5X27(5n x2—3)-a6x27 (10« X2-3)+

2.2 4 25
X27 +agh™] ] ,

+a77> (10£°03-1) -ag5k

p?sz(l—u)/kz[asnkéo(x2kg-2)-asxgx7(7nzkg—10)+a7xkg72(21&2X;—20)—
—a8X§n73(35&2k3-20)+agmxg74(35nzkg—10)—a10m75(2lnzkg—2)+
+a117n3xg76—a12n377] ,

53 _ 2 2
P =r (61'292)‘27[33x2'a47] )

3 3 6 4 2.2 3
pi = -p (e2-2e3)—27[-a4nx2+353nx27-a63mx27 +a K ] ,
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53
pez

53

4 6,2,4 4 2,4 22 2,4
p (e3-2e4)—27[a5X2(n Xz—l)—a6X27(5m X2—3)+a7X27 (10« X2—3)—

3 2,4 2,2 4 2.5
-agT (10« A2—1)+a955 X27 23105 7 ] ,

5 10, 2,4 8 2,4
p8 = -p (e4—2e5)—27[—asnx2 (x k2—2)+a7nx27(7n x2-10)-

6 2 2,4 4 3 2,4 2.4 2,4
—asnx27 (21« X2—20)+a9nX27 (35« A2-20)—alonx27 (35« X2-10)+

5 2,4 3,2 6 3.7
+a) 187 (21« X2-2)—a127n X27 +a 3k ] R

2 6 4 2.2 3
2) [a3nxz—a43nkz7+a53nx27 -2gKY ] )

2] 6, 2.4 4. 24 22 24
3% [-a 25 (O05-1) ra M a7 (5218-3) -2 02y 10k 2 E-3) «

3. 2.4 224 25
+an (10« Az-l)—a85n X27 +agh™y ] ,

10, 2,4 8 2,4 6 2 2,4
5 (x X2—2)—a6LX27(7n X2-10)+a7nX21 (21« k2—20)—

= 22%[a )
4 3 2,4 2.4 2,4 5 2,4
—a85X27 (35« X2—20)+a9nx27 (35% X2—10)—a1057 (21« X2—2)+

3,2, 6 3 7]
+a117n x27 “a10877 |

-1

T e(1-y)

2 4 2 2
p (e1—4e2+4e3)+2(1—u)[—a3X2+a42X27—a57 ] ,

!

3 8 6 4.2
-3 (oy-tegrte ) +2(1-) [2,08 -2 4n)Syra BirEy 2
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—a74nxg73+a8n74] )
55 4 8, 2.4 6 2,4
ﬂ7 =p (e3—4e4+4e5)+2(1—u)[—askz(& X2-1)+a6X27(65 X2—4)—

4 2 2,4 23 2,4
-a7X21 (15« X2—6)+38X27 (20« Xz

4, .24
-4)-ag7" (155°X5-1)+

2,25 2.6
+a,068 057 -2, 1 87T ] . (J.78)

The constants defined in section J.2 also apply to this section.
Other constants that are introduced are:

-1/2

-1 2 2
= -[a * n(l-u)] ’
1. 1w n n 2
r®-a Eégen(—l) [ i§ ] ' P =Ry (J.79)

As mentioned at the beginning of this appendix, the infinite
integrals are divided into two parts. The portion from A to infinity

is integrated in closed form. This part can be written as,

00
J I..cosa(t-y)da , 1=3, j=3; i=4,5, j=4,5 |,
At

00
j Iijsina(t-y)da , 1=3, j=4,5; i1=4,5, j=3 . (J.80)
A

This integral for Iij of the form given by Eqns. J.61-63 is evaluated

in section J.4. The following expressions are used in Eqns. 5.109-
111.

Ty = {j%:[pgi_1+(x2/x)2pgﬁ_z]+j§:—en(-1)np“} X

= n=>5

2n-2
X{(—l)n—l%§§%§77—lnlt—yl + F_(20-1)} +
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T

T A e e

{:Ej[p2 1209/ g g+ e, (17"

2n-2
X (- 1)“*1—%}'5)7),—1-‘ Q) , (J.81)
n+l (4 2n-1 2n-1
szn{( )P R (1)4F (20)+ (1) AT a1},
(J.82)
4 (]
35 = {20 2o (0 ley2e,11) X
2n-1 1 (bopy 2071
X {( 1) —i—l)—(z T lalt-yF (2n) + (-1) —Ll)——@n_l)! F_(1)}
(J.83)
{Z[pz +0g/N) By 1]} X
2n-1 2n-1
x {(-1) —fﬁ-‘ﬂ—lrmu -yl + Fy(am) + (1L 5T F L)
(3.84)
2n-2 _
Zp2n Jen —1—1)———(2 T nltyl F_(2n-1)} +
n+l_(t- 112 n-2 .
+ szn 1D =Gy F (D, =45, (J.85)
4
= {3 |- 00 %50+ ZEZ( 1) (e, y-2e,)) X
2n-1 2n-1
X {(—1)"%111% yI+F_(2n) + (- 1)“*1%FC(1)} ,

(J.86)

2n-2
Zﬁz,, 1{F (2n-1)+(-1) %lnlt—yl} +
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4 2n-2
* Eé;pgﬁ-1('l)n+l %én—2)! F ) (J.87)
— 4 L
155 = {nzzzngi“l +n§5(-1)npn(en_1-4en+4en+1)} X

2n-2

X {ﬁc(zn-1)+(-1)ni%§§%§7T—1n|t-yl} R

4 ud 2n-2
* {gégpgi-l +E§%(—l)npn(en_1—4en+4en+1)} (—1)n+1£%§§%§5T—Fc(1) )

(J.88)

J.4 Integrals From A to Infinity

We need expressiomns for

00

cosa(t-y) 4, | (J.89)
2n-1

A a“"

w -
[(=inaly) 45, 450, mo . (3.90)
A

These integrals come from the large a expansion of the Fredholm
kernels. Note that for nd>0O the limit for x»0 has been taken under the
integral sign. The n=0 cases of Eqns. J.89,90, for which the limit

must be taken after integration, are respectively demonstrated below,

lin ae-axcosa(t—y) da = -1 ) (J.91)
x+0 2
0 (t-y)
lin (* 1
xig e_axsina(t—y) da = -y (J.92)
0
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The 1/a case of Eqn. J.89 has a log singularity, the l/a2 term of J.90
becomes (t-y)lnlt-y! and so on. This is shown in the general

expressions presented below:

_ _oy2n-2
J Mﬂ da = Fc(2n-1) + (—1)n+1 ‘%ﬁz)—!l“c(l) +
2n-2
v (-1)" !Ey—)z)—,lnlt—ﬂ , (3.93)
_ _oy2n-1
feison sy 7, - (o e
2n-1
+ (1" %lnlt i, (J.94)
where
Alt-yl _
F(1) = -1, - In(A) - | sosx -l gy (J.95)
_ n-1 . 25-2 .
F_(2n-1) = 3_(-1)3*1 (o) _(20d2i)L gy oy o
¢ j= (2n-2) 14"
-2-923}!
R Z( 1yd &= n? ‘gz_g.ﬁ)' sinA(t-y) (3.96)
j= (2n-2) 1A°"74)
_ 1237209, o
F (2n) = 3 (-1)i*! =0 <§n_31_3i sinA(t-y) +
s j=1 (2n-1) 14774
—y)23- -1-92;
+ j{:( 1)J+1 (t-y) (gn_;.ZJ)! cosA(t-y) . J.97)
j=1 (2n-1) 1A n-<l
The constant in Eqn. J.95 is Euler’s comstant, T, =-57721566490153.

This expression is a cosine integral, Ci[Alt-yl], with the log term

taken out.
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